

New York State Center for Clean Water Technology

Second Public Symposium

BEYOND www.stonybrook.edu/cleanwater

Expanding population, nitrogen levels

Most nitrogen loading on Long Island from wastewater

(Kinney and Valiela, 2011; Lloyd 2014, 2016; Gobler and Stinette, 2016; CDM-Smith, in prep)

All of Long Island is a watershed -

Materials on land eventually enter our groundwater and surface water

Suffolk County:

500,000 conventional septic systems +

Sole Source Aquifer +

World class beaches, bays and marine resources

Crisis

_

And

Opportunity

The Economics of Innovation

Savings of \$.9 Billion to \$6.8 Billion

	Best Case	Medium Case	Worst Case
Systems replaced/ retrofitted (Total)	297,500	403,750	510,000
Systems benefiting from price reduction	165,600	290,550	408,340
Nominal cost of doing nothing over 30 years	\$6B	\$9.8B	\$14.4B
Nominal costs using new technology over 30 years	\$5.1B	\$6.6B	\$7.6B
Nominal cost savings over 30 years	\$0.9B	\$3.2B	\$6.8B

Center Goal:

To marshal the public and private-sector resources of New York State and beyond to develop more cost-effective technologies that will restore and protect water quality.

What We Do:

- Pursue strategic research that will inform refinements to existing technology;
- Develop novel and affordable approaches for nitrogen and contaminant removal;
- Actively foster collaborations with Suffolk County and beyond that will promote innovation and solutions.

Who We Are:

- Co-Directors: Drs. Chris Gobler and Hal Walker
- **Program Director:** Frank Russo, P.E.
- Research Coordinator: Dr. Roy Price
- Center Administrator: Ms. Hilary Wolfskill
- Faculty: Drs. Xinwei Mao, Jackie Collier, Nils Volkenborn, Laura Wehrmann, Qing Zhu, Bruce Brownawell, Ben Hsiao, Alex Orlov
- Post-doctoral Scholars: Drs. Stuart Waugh and Pejman Hadi Myavagh
- Graduate students: Molly Graffam, Samantha Roberts, Tricia Clyde, Zoe Smith, Kylie Langlois, Sarah Lotfikatouli, Zahra Maleki Shahraki

Short Term Objectives:

- R & D focus on OWT technology to accelerate innovation in field.
- 10:10:30
 - √ Reduce nitrogen levels to **below 10 mg/liter**.
 - ✓ **Cost \$10,000 or less per** (typical) household to install, and less than \$500 per annum to maintain.

√ Have a **life expectancy of at least 30 years**.

• Communicate knowledge and progress to key stakeholders.

Develop critical facilities at Stony Brook University to support development of I/A OSTS.

Methodological capabilities developed by CCWT

Analyte	Analytical Capabilities
Nutrients	Total N, NOx (NO3- and NO2-, sum), NH4+, N2O, N2, PO4 (Orthophosphate), Total P, DON, PON, TKN
Field Geochemistry	Temp, pH, BOD, Alkalinity, DO, TSS, Turbidity
Nitrogen transformation Rates	Nitrification, denitrification, ANNOMOX, DNR,: N2, N2O, NO (MIMS)
Microbial Diversity and Function	Total and Fecal Coliform, Enterococci, DNA and RNA and functional gene analysis using metagenomics by tag-sequencing of 16S rRNA genes and of whole-metagenome shotgun by Illumina Miseq., quantitative analysis of functional species (qPCR)
Major Cations, Anions	Al, Ba, Ca, K, Mg, Mn, Na, Si, Sr, F, Cl, Br, SO4
Trace Metals	Cu, Fe, Mn, Cd, Pb, Hg, As, Zn
Pharmaceuticals and Personal Care Products	DEET, Bisphenol A, Nicotine, Acetaminophen, Caffeine, Ibuprofen, Warfarin, Acesulfame K, Cotinine, Paraxanthine, DEET, Chlofibric Acid, Primidone, Naproxen, Carbamezapine, Salbutamol (Albuterol), Gemfibrozil, Cimetidine, Sulfamethoxazole, Ketoprofen, Diphenhydramine, Propranolol, Atenolol, Metoprolol, TCEP, Trimethoprim, Diclofenac, Warfarin, Fluoxetine, Ranitidine, Furosemide, Ciprofloxacin, Nifedipine, Fenofibrate, Amoxicillin, Diltiazem, Atorvastatin, Azithromycin, Furosemide, Estrone, β -Estradiol, 17 α -Ethynylestradiol, Nonylphenol, more

Conventional parameters:

- Nitrogen species
- BOD (biological oxygen demand)
- TSS (total suspended solids)
- pH
- Alkalinity

Nitrogen removal efficiency: a basic way to compare different systems

N removal efficiency = 1- (N _{out} / N _{in})

Lachat auto-analyzer

NH₄⁺, TkN, NO₃⁻, NO₂⁻ & TN

Measure nitrogen transformations in OWTS systems

Measuring N-transformation rate processes

Membrane Inlet Mass Spectrometer (MiMS)

Measuring denitrification rates

Non-nitrogenous compounds of concern

- Pharmaceuticals and other drugs
- Antibiotics
- Hormones
- Steroids
- Quaternary Ammonium Compounds (QACs)
- Surfactants
- Personal Care Products
- Pathogens
- Metals
- Phosphate and other Anions
- Cations (Boron)

"Contaminants of Emerging Concern"

- ≻ Includes:
 - 1. Pharmaceuticals and many other drugs
 - 2. Personal Care Products
 - 3. Quaternary Ammonium Compounds
- ≻ Concerns
 - Common in many household products
 - Carcinogenic
 - Endocrine disruptors
 - Can disrupt sewage treatment

List of some Contaminants of Emerging Concern that can be measured by CCWT

Acesulfame K DEET Acetaminophen Diclofenac Amoxicillin Diltiazem Atenolol e

Atorvastatin Azithromycin

B-estradiol

Diphenhydramin Estrone

Fluoxetine

Bisphenol A Caffeine Carbamezapine Ibuprofen Chlofibric Acid Cimetidine Ciprofloxacin Cotinine

Fenofibrate Furosemide Gemfibrozil Ketoprofen

Metoprolol Naproxen Nicotine

Nifedipine Nonylphenol Paraxanthine Primidone

TCEP (Tris(2-chloroethyl) phosphate) A fire retardant found in clothes and many other household products

FAR BEYOND

Measuring Contaminants of Emerging Concern Requires special instrumentation....

Time-of-flight Mass Spectrometry (TOF-MS) coupled to Liquid chromatography (LC), from Agilent Technologies

Separates and measures the concentration of complex organic compounds intact

Laboratory: Dr. Bruce Brownawell

Students: Patricia Clyde, Ph.D.

Metals

- Copper
- Manganese
- Lead
- Mercury
- Cadmium
- Zinc

Lamborg et al., 2013

- Concerning for several reasons
 - Can decrease the efficiency of sewage treatment
 - Copper pipes with lead solder in many homes
 - Toxic, Carcinogenic
 - Speciation (oxidation state) important
 - Composting generates can Mn, Cd Contamination

Total Metals Analyses

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS), Element 2 from Finnigan

Atomic Fluorescence Spectrometer (AFS), Illumina 3300 from Aurora

➤ Metal Speciation

-Couple these instruments to High Performance Liquid Chromatograph, from Shimadzu

Laboratory: Dr. Roy Price

Students: Zoe Smith, M.S.

FAR BEYOND

Effective Nitrogen Removal is Engineered Microbial Ecology

Functional Genes

Example: Denitrification

Gene = NirS

Enzyme NirS (nitrite reductase) $NO_2^- \rightarrow N_2$

•NRBs rely on microbial processes, so characterizing the microbial community can potentially diagnose the "health" of an NRB.

•Answer: "Is the NRB working as designed?"

Nitrogen Reducing Biofilters

Pilot Installations Underway & Planned

	Nitrogen removing Biofilters	Permeable reactive barriers	Constructed Wetlands
Installed	 MA Test Center (7) Suffolk County Pilot Program (3) 	 Hampton Bays (1)* Acabanoc Harbor (1)* *with Cornell CE 	 Shelter Island, Sylvester Manor (1) MA Test Center (1)
In progress	 Suffolk County Pilot Program (6) 	 East Hampton (1) 	 Uplands Farm (1)
Planned, next 6 – 12 months	 Shinnecock Indian Nation (10 – 20) 	Wainscott Pond	Georgica Pond

CCWT regional projects

1997			MA
	СТ	Old	
	CI	Saybrook,	MASSTC
		treated	facility,
		drain fields	7 NRBs,
			1 wetland
	Stony	Sylvester	
NO RECEIPT	Parsons Brook	221 Old Manor,	
Uplands	Drive drain	River wetland	D.D.
Farms, NRB,	Research field	NRB Georgica	KD
wetlands	Facility	Shinnecock Pond,	
	59 River Roac	NRB Hampton Nation, wetland	
NTY	9 Private Road	Bamaan Bays, PRB NRBs	
NI	NRB	drain field	
			a murchoonly

= Collaborative project with Suffolk County

= Project informing Suffolk County projects

Technology Assessment

- Reviewed manufacturer information, research literature, past technology reviews
- Met with practitioners, researchers in the field, other stakeholders
- Engaged Hazen and Sawyer to compile existing information and develop a technology assessment

Hazen

Technology Assessment for New York State Center for Clean Water Technology Final Report

Revised Final Report May 17, 2016

Nitrogen reduction soil, plant and wetland processes technology ranking summary

Top ranked = nitrogen removing biofilter (NRB)

CCWT NRB Design Charrette, 2016

- Two-day gathering of regional and national experts on NRBs.
- Consensus on testing Long Island native materials.
- Consensus building on function and optimal, next generation design.

Nitrogen Removing Biofilters (NRB)

Standard drain field system

- Most common on-site wastewater disposal approach in US.
- Very rarely used on Long Island.
- More nitrogen removal than Long Island leaching ring systems due to proximity to surface.
- Shallow depth (< 2 ft) wellsuited for coastal regions experiencing sea-level rise.

FAR BEYOND

Depth to groundwater on Long Island

SoMAS estimates 7 ft of sea level rise this century.

Nitrogen Removing Biofilters (NRB)

FAR BEYOND Carbon source to promote denitrification

Nitrogen Removing Biofilters (NRB)

Massachusetts Alternative Septic System Test Center

Director, George Heufelder

MASSTC

The Massachutess Alternative Septic System Test Center was constructed on a site adjacent to the Massachusetts Military Reservation Wastewater Treatment Plant. The Center intercepts wastewater on its way to the treatment plant and distributes it to the test cells. Wastewater is from residential households and a county jail.

FAR BEYOND

Long Island native sands and wood chips delivered to Massachusetts to create "NY NRBs"

Unintended benefits of NRBs...

Lined, saturated NRB

NY1

Lined, saturated NRB

Average total N = <u>7.9 mg/L</u>

BEYOND

Unlined, unsaturated NRB

Unlined, unsaturated NRB NY3 Average total N = 8.5 mg/LTN mg/L days since inception on 10-05-16 ---- Channel Influent - TN D-Sump - TN

Replaceable woodchip biofilter

FAR BEYOND

Replaceable woodchip biofilterNY2Average total N = 3.2 mg/L

Two years of data from MASSTC system

FAR BEYOND

Two years of data from MASSTC system

* Stony Brook University

BEYOND

Phosphorus removal

Microbial analysis----E.coli (indicator of pathogens)

Stony Brook University

FAR

BEYOND

Over 95% removal of 30 PPCPs detected in influent

Removal efficiency in full scale wastewater treatment plants

*Reemtsma, 2008 #EPA, 2010; Lara-Martin, 2014

Preliminary N₂O emissions measured from CCWT NRB installations at MASSTC in December 2017

First NRB installed on Long Island March, 2018

Research to inform innovation...

Bench-scale experiments isolate controls on denitrification in NRBs

Optocosm experiment: Oxygen, microbial and nitrogen dynamics

Nitrogen Removing Biofilter

Drs. Nils Volkenborn, Jackie Collier, Stuart Waugh Graduate students: Kylie Langlois, Molly Graffam

Optocosm experiment: Oxygen, microbial and nitrogen dynamics

1 dose of 15mL every 3hours over 11 days \rightarrow 0.5 Gal sqft⁻² day⁻¹

Artificial "wastewater": 20 mg L^{-1} NH₄NO₃

O₂ images taken very 30 seconds (≈30k images)

11 days in 60 seconds (16,000-fold speed)

Optocosms #1- #3 (upper row): never fully recovered from intentional short-term water saturation. Some regions remained anoxic until the end of the experiment.

Optocoms #4 & #5 reproducible and consistent O₂ dynamics over 11 days

Optocoms #6 Unintended clogging towards the end of the experiment

• Efficient nitrogen removal in all optocosms (87-97%)

~ 50% of nitrogen loss, most likely as N₂ to the atmosphere

Microbial community diversity

Difference in denitrfying bacteria between layers

Difference in denitrfying bacteria between layers

FAR

Attached bacteria within NRBs

System X at MASSTC cored November 2016

Microbes within the NRB sediments

Microbes within the NRB lysimeters

- Liquid samples collected from MASSTC (3 systems + influent channel/septic influent)
- January, April, July, November 2016

FAR BEYOND

Microbes within the NRB lysimeters

MASSTC 16S January, April, July, November