Alternative Fuel Vehicles at Brookhaven National Laboratory

Successes and Challenges

March 16, 2011 Mark Toscano Manager, Energy Management Science

Brookhaven National Laboratory A passion for discovery

5321 acres
350 buildings
$\sim 4.2 \mathrm{M} \mathrm{sq} \mathrm{ft}$

FY 08	FY 09	FY 10
$\$ 532 \mathrm{M}$	$\$ 880 \mathrm{M}$	$\$ 700 \mathrm{M}$

29 miles paved roads

12 miles sidewalks
>4000 guest users per year

> Brookhaven National Laboratory

Energy Use
FY 2009
Process

Note: Vehicle fuels ~ 99,000 Gal/year (includes 25,000 gallons of diesel)

Transportation Vehicle- Overview

- 292 Vehicles of mixed use on site: ~35\% are Alternative Fuel
- Compressed natural gas (CNG) fueling infrastructure installed 2001
- 75 CNG vehicles displaced 23,900 GGE (~25\% of total) in 2010
- BNL provides compressed natural gas refueling to local governments that partner with DOE Clean Cities
- E85 refueling infrastructure operational late 2010
- 27 Vehicles
- Biodiesel displacing about 20\% of the vehicle diesel consumption
- Started early 2010
- Neighborhood electric vehicles to replace some conventional-fuel vehicles

CNG - Overview

- CNG Facility - Installed late 2001
- 3000 / 3600 PSI fueling pressure - Fast fill @ ~ 600 SCFM (5 GGE/min)
- 1 Bauer 40 SCFM (30 HP) compressor
- 30,000 SCF storage
- Tulsa fuel dispensers with card readers
- Enclosure for compressor(s), controls, drier
- \$378,000 construction contract. \$575,000 Total Project Cost
- Second Compressor - Added 2005
- 1 Bauer 40 SCFM compressor
- Controls upgrade/conversion to Allen-Bradley PLC
- \$215,000

CNG - Original Estimate

Natural Gas Vehicles Updated: 6/4/2000

End of Year	$\left\lvert\, \begin{array}{c\|} \text { No. } \\ \text { Vehicles } \end{array}\right.$	Ave. Miles per year	$\begin{array}{\|c\|} \hline \text { Ave. } \\ \text { Miles } \\ \text { per gge } \\ \hline \end{array}$	$\begin{array}{c\|} \hline 52 \mathrm{wks} \\ \text { gge } \\ \text { per year } \\ \hline \end{array}$	Average: 7 Days, $24 \mathrm{hrs} / \mathrm{day}$						Therms per year	Cubic Feet per year	Nat GasCost	$\begin{array}{\|c\|} \hline \text { Nat. Gas } \\ \text { Fuel } \\ \text { Savings } \\ \hline \end{array}$	Incremental Vehicle Cost$\|$	$\begin{gathered} \text { Infrastructure } \\ \text { Cost } \end{gathered}$
					$\begin{array}{\|c\|} \hline \text { gge } \\ \text { per week } \\ \hline \end{array}$	$\begin{gathered} \text { gge } \\ \text { per day } \end{gathered}$		$\begin{array}{\|c\|} \hline \mathrm{Nat.}^{\text {Gas }} \\ \mathrm{Ft}^{3} \mathrm{Wk} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Nat. Gas } \\ \mathrm{Ft}^{3} \text { /day } \end{gathered}$	Nat. Gas CFM						
2000	20	4,000	12	6,667	128	18	0.76	15,385	2,192	1.52	8,333	800,000	\$3,823	\$1,577	\$30,177	
2001	32	4,000	13	9,600	185	26	1.10	22,154	3,156	2.19	12,000	1,152,000	\$5,506	\$2,270	\$24,800	\$580,000
2002	44	4,000	13	13,200	254	36	1.51	30,462	4,340	3.01	16,500	1,584,000	\$7,570	\$3,122	\$24,800	
2003	56	4,000	13	16,800	323	46	1.92	38,769	5,523	3.84	21,000	2,016,000	\$9,635	\$3,973	\$24,800	
2004	68	4,000	13	20,400	392	56	2.33	47,077	6,707	4.66	25,500	2,448,000	\$11,699	\$4,825	\$24,800	
2005	80	4,000	13	24,000	462	66	2.74	55,385	7,890	5.48	30,000	2,880,000	\$13,764	\$5,676	\$24,800	
2006	92	4,000	13	27,600	531	76	3.15	63,692	9,074	6.30	34,500	3,312,000	\$15,829	\$6,527	\$24,800	
2007	104	4,000	13	31,200	600	85	3.56	72,000	10,258	7.12	39,000	3,744,000	\$17,893	\$7,379	\$24,800	
2008	116	4,000	13	34,800	669	95	3.97	80,308	11,441	7.95	43,500	4,176,000	\$19,958	\$8,230	\$24,800	\$375,000
2009	128	4,000	13	38,400	738	105	4.38	88,615	12,625	8.77	48,000	4,608,000	\$22,022	\$9,082	\$24,800	
2010	140	4,000	13	42,000	808	115	4.79	96,923	13,808	9.59	52,500	5,040,000	\$24,087	\$9,933	\$24,800	
2011	152	4,000	13	45,600	877	125	5.21	105,231	14,992	10.41	57,000	5,472,000	\$26,152	\$10,784	\$24,800	
2012	164	4,000	13	49,200	946	135	5.62	113,538	16,175	11.23	61,500	5,904,000	\$28,216	\$11,636	\$24,800	
2013	176	4,000	13	52,800	1,015	145	6.03	121,846	17,359	12.05	66,000	6,336,000	\$30,281	\$12,487	\$24,800	
2014	188	4,000	13	56,400	1,085	155	6.44	130,154	18,542	12.88	70,500	6,768,000	\$32,345	\$13,339	\$24,800	
2015	200	4,000	13	60,000	1,154	164	6.85	138,462	19,726	13.70	75,000	7,200,000	\$34,410	\$14,190	\$24,800	
												Total	\$303,190	\$125,030	\$402,177	

CNG - Performance

Note: BNL GGE for 2010 was 23,913. The balance was consumed by others.

CNG Fueling Facility Highlights

CNG - Lessons Learned

- OEM Manufacturers extremely limited
- Most have left the market
- Mainly pick-up trucks and vans
- Retrofits for new vehicles are very expensive
- Conversions $\sim \$ 18,000 /$ vehicle in addition to vehicle cost
- May/will void manufacturers warranty
- CNG Vehicles
- Require annual inspections of fuel systems
- Storage tanks lasting ~5 years - Many fail inspection process
- Parts have become expensive, with some increasing by $3 x$ in 5 years
- Less range than conventional fuel vehicles

CNG Summary

- CNG vehicles are a practical, albeit expensive alternative to gasoline versions
- Try to take advantage of grants and other incentives
- Clean cities, NYSERA, etc.
- CNG better suited for:
- Fleet operations and high usage per vehicle
- Large infrastructure investment softened on a unit cost basis
- Areas were low emissions are particularly important
- Populated areas, long idling time, etc.
- Must budget for additional maintenance and capital investments
- Compressor rebuild/replacements
- Tank certification and replacements
- Higher vehicle first cost

