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significantly affects disability risk. Incorporating this into a general equilib-

rium model, social disability insurance (SDI) affects welfare through (i) the

classic, risk-sharing channel and (ii) a new channel of occupational realloca-

tion. Both channels can increase welfare, but at the optimal SDI they are

at odds. Welfare gains from additional risk-sharing are reduced by overly

incentivizing workers to choose risky occupations. In a calibration, optimal

SDI increases welfare by 2.3% relative to actuarially fair insurance, mostly

due to risk sharing.
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1. Introduction

This paper considers how workers’ occupational choice affects the opti-

mality of social—or public—disability insurance (SDI). The two are related

because, in choosing their occupation, workers are choosing their physical

health risk and, hence, their likelihood to need disability insurance. Dis-

ability insurance then, alters the composition of occupations by incentivizing

workers to chose occupations with higher risk. This reallocation towards

risky occupations can, however, be desirable when occupations are imperfect

substitutes in production and insurance markets are incomplete.

Our central results are based on a theoretical model of occupation choice,

occupation-specific disability risk, and incomplete markets for private insur-

ance. We show that fewer workers choose occupations with high disability

risk than would achieve productive efficiency. This occurs because workers in

high-risk jobs demand a compensating differential, a wage sufficient to self-

insure against disability. But with a downward sloping demand for additional

workers in each occupation, these high wages obtain only if there are ineffi-

ciently few workers in high-risk occupations. In other words, self-insurance

is too expensive and so equilibrium prices correspond to an inefficient distri-

bution of workers.

The introduction of SDI improves welfare through two channels. The first

is through risk sharing: social insurance improves welfare by helping workers

in risky occupations to smooth consumption. The second, novel channel

is occupational reallocation: SDI encourages more workers to choose risky

occupations. On the margin, the allocation of workers across occupations

becomes more efficient and output increases. The gains are larger than the

cost to fund the scheme because social insurance is more efficient than self-

insurance. With self-insurance, some workers who accumulate savings never

become disabled. The increase in output provides welfare gains even for

workers with zero disability risk and many whose disability risk never realizes.

The two channels, risk-sharing and the reallocation, both work to increase
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welfare upon introduction of social insurance, but at the welfare-maximizing

level they are at odds. Although reallocation towards risky occupations ini-

tially improves productive efficiency, additional insurance can increase the

risky occupational allocation beyond the output maximizing level. At the

point at which an SDI expansion reduces output, welfare gains from risk-

sharing remain. This result is general and not a quantitative statement;

welfare is maximized by an SDI program that induces workers to choose

risky occupations beyond the output maximizing level.

Our results are qualitatively robust to ex ante heterogeneity in preferences

that induce sorting and to private information over disability status, though

this imposes bounds on the benefit. Further, private information over dis-

ability status is a reason for why private insurance cannot achieve the same

welfare gains as social insurance. If neither public nor private contracts can

condition on workers’ risk-level, i.e. contracts are not occupation-specific,

high-risk workers over-subscribe to private insurance contracts. This adverse

selection leads to a market failure typical of insurance contracts with private

information.1 Social insurance can dictate equal insurance coverage so it is

not subject to adverse selection and always generates welfare gains.

To motivate our theoretical work, we show heterogeneity in disability in-

cidence across occupations. Using data from the University of Michigan’s

Health and Retirement Survey (HRS), we find a natural grouping between

low- and high-risk occupations, the latter have about twice the disability

rate as the low-risk group. While this is suggestive, occupational choice is

endogenous and potentially influenced by unobservable factors. To begin ad-

dressing this, we propose an instrument scheme using O*NET measures of

physical and non-physical occupational requirements. Physical requirements

1Market failure here is Rothschild Stiglitz-like, in that if an insurance contract were

offered, it would attract high-risk workers and earn a negative profit. Increasing the price

only makes adverse selection worse.
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have health repercussions, but their estimated effect may be influenced by

sorting along these physical requirements. Therefore, we instrument physi-

cal requirements by the non-physical requirements in the O*NET. The intent

is to use how occupations bundle requirements: While workers’ unobserved

physical traits may guide sorting along the physical requirements, they hope-

fully do not guide sorting on non-physical requirements, but, these require-

ments can predict the physical requirements. This instrumenting scheme is

not a definitive solution, but it does uncover significant bias in the estimate

assuming exogeneity.

We use these facts, along with the US SSDI system, to calibrate our model

of occupation risk. We find the optimal SDI program costs 4.8% of GDP and

provides welfare gains equivalent to a 2.3% increase in consumption in a world

with actuarially fair insurance alone. Relative to this optimal program, the

current US system captures 33% of the potential gains. We conclude from

these findings that there is a quantitatively important role for SDI beyond

the insurance that is provided by private markets.

The economic mechanism of this paper is most related to that of Ace-

moglu and Shimer (1999). They show unemployment insurance can raise

output by inducing workers to search for higher productivity jobs which

are rarer, and therefore, more risky to pursue. In this paper, SDI also in-

creases output by inducing workers to take on more risk in their job search;

specifically choosing occupations with greater disability risk. In both, social

insurance is not simply a transfer to those experiencing bad luck. Instead,

improvements in productive efficiency increase the welfare of all individuals,

even those who face little or no risk.

Schulhofer-Wohl (2011) also considers workers who choose jobs with dif-

ferent levels of risk and focuses on underlying heterogeneity in preferences.

He shows that this generalization can reduce the welfare costs associated

with incomplete insurance. In an extension, we incorporate preference het-

erogeneity and show our SDI scheme still generates Pareto-improving welfare
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gains, although those gains may now be unequal. Quite consistent with the

results of Schulhofer-Wohl (2011) Workers in the most risky occupations may

gain the least from insurance because the most impatient agents select into

those occupations.

Several papers discuss disability’s interaction with other economic factors.

Notably, Golosov and Tsyvinski (2006) also consider optimal DI, but from

a mechanism design approach to prevent misreporting. This consideration

is important, and so we show workers reveal their status in our baseline

SDI scheme because our policy tool is already constrained from providing

full-insurance.

We motivate our normative work by estimating the heterogeneity in dis-

ability risk across occupations. A few papers present similar empirical results

(e.g. Fletcher et al., 2009; Morefield et al., 2011). These papers both connect

physically demanding occupations to health problems later in life. Ravesteijn

et al. (2013) use German data and, again, link occupational physical demands

to health deteriorations. They use a dynamic fixed effects model to control

the individual effects affecting both occupational choice and health outcomes.

We introduce a set of instrumental variable techniques to specifically address

this problem of endogeneity between occupational choice and potential het-

erogeneity in risk sensitivity.

2. Data on occupations and disability

In this section, we present data regarding the connection between an in-

dividual’s occupation and disability risk. First, we construct a measure of

lifetime exposure to an occupation using the University of Michigan’s Health

and Retirement Study (HRS). The survey respondents provide detailed in-

formation on their health conditions, from which we infer whether they are

“disabled.” We find that occupations have quite disparate disability rates,

much of which can be attributed to their occupations’ effects themselves.
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2.1. Constructing the dataset

We begin with RAND’s distribution of the HRS with some restrictions

described in A.1. We use one of two measures of disability for health problems

during working life, before 65. Our baseline uses the more restrictive measure,

which looks at whether they report limitations to activities of daily living

(ADLs). The broader of the two uses the survey’s direct question, whether

a health problem limits one’s ability to do paid work. Results are generally

very similar between the two, as shown in the online Appendix.

We will associate an individual with his or her longest-held occupation,

reported retrospectively. If we used the current occupation, we would mis-

takenly consider an occupation dangerous if workers in poor health switched

into that occupation later in life. For each occupation, we merge in Knowl-

edge, Skills and Abilities descriptors from O*NET version 4.0, “analyst,”

database. We then use the first principal component from the 19 physical

descriptors and three components from the 101 non-physical descriptors.

2.2. The distribution of disability across occupations

Figure 1 shows the distribution across occupations of the incidence of a

disability, as measured by having a difficulty with an ADL. In this kernel

density estimate, each data point is an occupation, and within that occupa-

tion, we construct the average rate of ADL difficulties. We then weight the

occupations by their population using the appropriate weights provided by

the HRS. Along the horizontal axis, we plot dots representing the position

of occupations.

[Figure 1 about here.]

Observationally, there are two clusters of occupations, a larger low-incidence

group and a tail with more than twice the average rate of ADL difficulties.

To summarize these two groups, we estimate a mixture of two normal dis-

tributions to classify occupations as “risky” or “safe.” From our primary
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measure, whether a worker has any limitations to ADLs, the mean disability

rate in the high risk group is about 16%, twice that of the the low-risk group.

About 17% of the population worked in this high risk group.

The largest high-risk occupations are machine and transport operators

and also include construction and extraction occupations. The large, low-risk

occupations are professional and management occupations, administrative

support and sales.

2.3. Demonstrative evidence of the occupation effect

How much of the difference in disability outcomes across occupations can

be ascribed to the occupations themselves? Potentially, there are systematic

differences between individuals who choose what appear to be “risky” occupa-

tions and those who choose safe occupations. We first use an Oaxaca-Blinder

decomposition to extract the residual effect of occupation on disability from

observable differences between workers in different occupations. However, it

is problematic to interpret this decomposition because the grouping is en-

dogenous, i.e. people choose their occupations. We attempt to address the

issue of endogenous occupation selection by introducing an instrument: We

use O*NET measures of physical demands to summarize the occupation’s ef-

fect on health, which we instrument by the non-physical demands that tend

to be bundled together within occupations.

The Oaxaca-Blinder decomposition splits the differences in disability out-

comes between observable characteristics and residual differences in disability

rates across occupation groups. We group occupations into two sets, low- and

high-risk, based on the mixture we estimated on Figure 1, assigning each oc-

cupation to the distribution with highest density at its level of risk. Then

we regress an indicator of whether the individual ever reported disability on

the following regressors: a cubic for potential experience, body mass index

(BMI), time, dummies for education level, gender, marital status, race, and

tobacco use. We set the characteristics of workers who report a disability by

their values in the wave in which they become disabled. For workers who
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never report a disability, we use the mean value of their characteristics across

waves. The results of the decomposition are summarized in Table 1.

[Table 1 about here.]

Column (1) of Table 1 averages covariates to make one observation per

individuals; column (2) use multiple periods per individual. In our baseline

case, Column (1), the occupation effect accounts for 42% of the difference

in risk. This decomposition suggests much of the difference in risk is unex-

plained by population differences without differences in occupations them-

selves.

While this decomposition is instructive, there may also be unobservable

characteristics that differ across workers in risky and safe occupations, and

this implies there also may be sorting. For example, if more physically robust

workers sort into physically-demanding occupations, this would attenuate

occupations’ effect. We now use instruments to partly address this.

We map occupations’ health risk into the physical demands characterized

by the O*NET, the construction of which we described in subsection 2.1. To

relate to our two occupation groups, risky occupations have a mean physical

requirement of 1.05 and safe occupations have a mean of -0.65, where the

population is mean 0 and standard deviation one. Using a direct measure

of physical requirement instead of the identity of the occupation cuts away

other characteristics of occupations that may be related to disability, such as

economic decline. However, it does not address sorting on the desired level

of health risk itself, the fundamental endogeneity problem we face.

To address this, we create a set of instrumental variables from the non-

physical requirements of occupations. Because occupations bundle many

requirements, and there are patterns in these bundles, we can use the non-

physical requirements to predict the physical requirements of an occupation.

These requirements will be valid instruments if non-physical requirements

are uncorrelated with one’s propensity for disability.

7



To make clear our strategy, for an individual i in occupation j, we model

the probability of ever becoming disabled before age 65 as

Pr[Disabledi] = f(γHj + x′iβ + νi) (2.1)

where xi is the same vector of observable characteristics as our previous

specification and f is the link function. Hj is the first principal component of

the physical descriptors associated with occupation j and νi is an unobserv-

able individual trait, physical “robustness.” Robustness may affect both the

probability of disability and the level of physical requirements one chooses

in an occupation. We therefore treat Hj as endogenous and instrument it

with the first 3 principal components of the non-physical requirements of the

occupation.2 The idea behind our instrument is that workers may choose

their occupation considering νi, e.g. particularly athletic individuals may

chose more physically intense jobs given they know they are less sensitive

to these demands, but they do not chose other non-physical occupational

characteristics based on νi. Occupations, however, follow certain patterns in

how they bundle requirements, so the non-physical requirements can predict

well the physical requirements.

The marginal effects from the estimation of Equation 2.1 are in Table

2. Column (1) displays the baseline IV-Probit estimates. Column (2) adds

industry fixed effects and clusters standard errors on industry, which may

be important to control for economic factors affecting labor-force attach-

ment and disability reporting. Column (3) uses health-limitations rather

than ADL difficulties as the measure of disability. Columns (4)-(6) repeat

these specifications but without instrumenting. The first stage of the IV,

2The number of components we use as instruments is not completely innocuous. Dou-

bling the number of components, they predict the physical requirements near perfectly

and invalidate the instruments. Our results are qualitatively the same if we increase the

number of principal components to 4 or reduce to 2.
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in Appendix Section A.2 which shows that non-physical requirements are

strongly negatively related to physical requirements. To depart from distri-

butional assumptions of the Probit, we also include estimates of the linear

probability model and IV linear probability model in A.3. The coefficients

are quantitatively very similar to the marginal effects of our Probit.

[Table 2 about here.]

The principal result from these estimates is in the first row and is quite

consistent across estimation methods. In our baseline specification, a stan-

dard deviation change in physical requirements increases disability risk by 3.4

percentage points. Applying this coefficient to our two groups of occupations:

the higher physical requirement of risky occupations implies about a 5.7 per-

centage point higher rate of ADL difficulty than other occupations. Notice

that the instruments increase the margin by a small, but statistically signifi-

cantly different amount, which suggests that people sort into more physically

demanding occupations if they have a lower disability risk.

The results of our instrumental scheme are suggestive of the underlying

relationship on which our theory is based; however, one could reasonably

question the validity of these instruments. Essentially, if traits are correlated

then sorting on physical robustness also implies sorting on non-physical acu-

ity, the instrument will be invalid. Further, the actual task and skill com-

position of occupations are endogenous to a degree: the bundle is chosen in

part as a result of the sorting of workers. Quantitatively, the first-stage is

worryingly predictive—its F-statistic’s p-value is 0.000—suggesting our in-

struments are too tightly related to the endogenous variable. So here we

have not definitively established a causal link but offered evidence of a rela-

tionship.

3. A Model Economy with Occupation-Specific Disability Risk

To prove our theoretical results, we use a two-period overlapping gener-

ations model where disability status is a publicly-observed, discrete event.
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Workers who receive a disability shock cannot work.

Time is discrete. There is a single consumption good produced with labor

by workers in a continuum of different occupations j ∈ [0, J ]. The produc-

tion technology exhibits constant elasticity of substitution across occupations

with elasticity of substitution ρ = 1
1−γ <∞. The index of an occupation also

defines an occupation-specific probability of disability in the second period:

θ(j) = j.

There is a continuum of competitive firms. The representative firm hires

labor n(j) in occupation specific spot markets to solve the following maxi-

mization problem:3

max
{n(j)}Jj=0

y −
∫ J

j=0

w(j)n(j)dj s.t. (3.1)

y =

(∫ J

j=0

n(j)γ
)1/γ

(3.2)

Each period a unit measure of workers is born. Workers are identical at

birth and live for two periods. They have strictly risk-averse, time-separable

preferences over consumption in both periods U(c1, c2) = u(c1) + u(c2). The

utility function u(·) is assumed to be strictly increasing, strictly concave,

homothetic, and continuously differentiable.

In the first period, workers choose a single occupation, which persists

their entire lifetime. They then work, collecting wage earnings net of taxes

(1−τ)w(j). From these earnings, they decide how much to consume, c1, and

how much to save in a, a storage technology with rate of return 1.

In the second period, disability shocks occur with occupation-specific

probability θ(j). Individuals who receive a disability shock cannot work

and report themselves as disabled. Their income is disability benefits with

3Because firms hire in spot markets, their problem is static. This means they cannot

design complicated, multi-period wage contracts. It also implies firms do not internalize

that hiring workers in risky occupations decreases labor available in the next period.
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replacement rate b; ie: bw(j). Individuals who do not receive a disability

shock will work. Their income is wage earnings net of taxes (1 − τ)w(j).

Agents consume whatever income plus savings they have, then die. Sub-

script 1 denotes period 1 consumption, d is period 2 consumption when a

worker is disabled and n is for period 2 when a worker is not disabled. This

problem can be represented as maxj∈[0,J ] Ej[U(c∗1(j), c∗n(j), c∗d(j))], where we

use Ej to show the expectation over risks associated with occupation j, θ(j).

Ej[U(c∗1(j), c∗n(j), c∗d(j))] = max
c1,cn,cd,a

u(c1) + (1− θ(j))u(cn) + θ(j)u(cd) s.t.

(3.3)

c1 ≤ w(j)(1− τ)− a (3.4)

cn ≤ w(j)(1− τ) + a (3.5)

cd ≤ a+ bw(j) (3.6)

a ≥ 0 (3.7)

The solution to this problem gives occupation-specific decision rules: c∗1(j), c∗d(j), c
∗
n(j), a∗(j).

Define `∗(j) as the measure of workers choosing occupation j .

Definition 3.1 (Competitive equilibrium). An equilibrium consists of allo-

cations

{c∗1(j), c∗d(j), c
∗
n(j), a∗(j), `∗(j), n∗(j)}, government policies {τ, b}, and prices

w∗(j) for every j ∈ [0, J ] such that (i) given prices and government policies,

allocations solve the workers’ and firms’ problems; (ii) feasibility is satisfied

in the labor market: n∗(j) ≤ (2−θ(j))`∗(j); markets clear in (iii) goods; and

(iv) government budgets balance period-wise.

Optimality in the labor market requires satisfying two conditions:

• Firms: Wage equals marginal product: w(j) =
(

y
n(j)

)1−γ

• Workers: Indifferent between entering any occupation:

Ej[U(c∗1(j), c∗n(j), c∗d(j))] = Ek[Uc
∗
1(k), c∗n(k), c∗d(k))] ∀j, k ∈ [0, J ] .
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Goods market clearing requires that

y ≥
∫ J

j=0

c1(j) + (1− θ(j))cn(j) + θ(j)cd(j)dj

Government budget balance requires

b∗ ≤ τy∫
j
θ(j)`(j)∗w(j)∗dj

3.1. Sources of Inefficiency in the Competitive Equilibrium

Our first proposition shows that the competitive allocation without SDI

(τ = 0) is Pareto inefficient. A first-best social planner can choose an alter-

native feasible allocation that improves welfare for all agents.

Proposition 3.2. Let {ccm1 (j), ccmd (j), ccmn (j), `cm(j)} be the first-best plan-

ner’s allocation. It solves

max
{c1(j),cd(j),cn(j),`(j)}

∫
j

`(j) (u(c1(j)) + θ(j)u(cd(j)) + (1− θ(j))u(cn(j))) dj s.t.(∫
j

((2− θ(j))`(j))γdj
) 1

γ

≥
∫
j

`(j) (c1(j) + θ(j)cd(j) + (1− θ(j))cn(j)) dj

1 ≥
∫
j

`(j)dj

Then, {ccm1 (j), ccmd (j), ccmn (j), `cm(j)} strictly Pareto dominates {c∗1(j), c∗d(j), c
∗
n(j), `∗(j)}.

Proof. See Appendix B.4

The first-best planner’s allocation provides welfare gains through two

channels: (i) reallocation of consumption across workers (risk-sharing) and

(ii) reallocation of workers across occupations. The existence of welfare gains

through the first channel is unsurprising: workers have insufficient assets

needed to span the risks they face. We formally show its existence within

our model in the next proposition. To do so, we fix the labor allocation and

output from the competitive equilibrium and provide an alternative feasible

consumption allocation that Pareto dominates the competitive allocation.

12



Proposition 3.3 (The Competitive Allocation of Consumption Without In-

surance is Pareto Inefficient). Let {c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} sat-

isfy Definition 3.1 for the case b = τ = 0 . There exists an alternative

feasible allocation {ĉ1(j), ĉd(j), ĉn(j), ˆ̀(j)} that:

(i) increases expected utility in each occupations

Ej[U(ĉ1(j), ĉn(j), ĉd(j))] ≥ Ej[U(c∗1(j), c∗n(j), c∗d(j))] ∀j ∈ [0, J ]

∃k s.t. Ek[U(ĉ1(k), ĉn(k), ĉd(k))] > Ek[U(c∗1(k), c∗n(k), c∗d(k))]

(ii) is feasible∫
j

ˆ̀(j) (ĉ1(j) + θ(j)ĉd(j) + (1− θ(j))ĉn(j)) dj ≤
(∫

j

(ˆ̀(j)(2− θ(j)))γdj
) 1

γ

Proof. See Appendix B.2

The next proposition formalizes the existence of the second welfare im-

proving channel in our model: reallocation of labor to improve production

efficiency and increase output. With constant-elasticity of substitution (CES)

production (indeed, even with linear, γ = 1), efficient production requires the

marginal product to be constant across occupations. This implies a constant

life-time income across occupations. However, with incomplete markets, risk

adverse workers require a wage premium to work in more risky occupations

relative to less risky. For the competitive allocation to provide this risk pre-

mium, fewer workers must choose risky occupations than the efficient, output

maximizing allocation. In other words, the competitive allocation of labor

across occupations is first-order stochastically dominated by the efficient al-

location.

Proposition 3.4. [The competitive allocation without insurance puts too few

workers in risky occupations] Let `∗(j) satisfy Definition 3.1 for the case

b = τ = 0. Let `cm(j) be the feasible, output-maximizing allocation. Then,∫ t

j=0

`∗(j)dj ≤
∫ t

j=0

`cm(j)dj ∀t ∈ (0, J ]
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This is to say, the efficient distribution of labor across occupations first-order

stochastically dominates the distribution in the competitive allocation.

Proof. See Appendix B.4

The degree of productive inefficiency in the competitive equilibrium de-

pends on both the extent of risk aversion of workers and the elasticity of

substitution across occupations in production. As risk aversion increases,

the competitive allocation becomes less efficient by concentrating even more

workers in less-risky occupations. Comparably, if workers are risk neutral,

the competitive allocation is efficient. Figure 2 illustrates this for constant

relative risk aversion (CRRA) preferences, u(c) = c1−σ

1−σ , and γ = 0.5.

[Figure 2 about here.]

As the elasticity of substitution between occupations increases, both the

competitive and the efficient allocations place fewer workers in the risky

occupations. While the efficient allocation always places more workers in

the risky occupations, the distance between the two distributions is non-

monotone. When occupations are perfect substitutes, the distributions are

equivalent with all of the workers in the safest occupation. When production

is Leontief, both allocations evenly distribute workers across occupations.

Figure 3 illustrates this, fixing risk aversion at σ = 2.

[Figure 3 about here.]

3.2. How Social Disability Insurance Improves Welfare

We have shown that the competitive equilibrium without an SDI scheme

is inefficient, both in terms of inadequate consumption smoothing and misal-

location of labor across occupations. SDI addresses both of these. It directly

provides smoother consumption in risky occupations which indirectly serves

to incentivize workers to choose riskier occupations. The next proposition
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shows that a marginal introduction of SDI improves both welfare and pro-

ductive efficiency. It shifts labor to a more efficient allocation and provides

smoother consumption across states.

Proposition 3.5 (There exists a strictly positive welfare maximizing level of

insurance that is a Pareto improvement over no insurance.). Let EU(j, τ) be

the expected utility Ej[U(c∗1(j), c∗n(j), c∗d(j))](τ) from the allocation in compet-

itive equilibrium {c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} satisfying Definition

3.1 for occupation-independent benefit rate b funded by occupation-independent

tax rate τ . Then, ∃τ ∗ > 0 such that

∂
∫
`(j)EU(j, τ ∗)dj

∂τ
= 0

and

Ej[U(c∗1(j), c∗n(j), c∗d(j))](τ
∗) > Ej[U(c∗1(j), c∗n(j), c∗d(j))](0) ∀j

Proof. See Appendix B.5.

A key insight is that the redistribution of workers across occupations un-

der social insurance increases the wage in the risk-free occupation. This is

a necessary condition for SDI to provide a Pareto improvement, regardless

of specific parametrizations. Because workers are free to move across occu-

pations, their welfare must equalize. In particular, there must be welfare

gains in the risk-free occupation that does not benefit from a transfer in a

disabled state. This is possible because each dollar of benefits offsets the

wage premium required in risky occupations for self-insurance by more than

one-to-one.

Welfare gains from expanding the SDI system are not without bounds. As

the system becomes larger, it serves as an inefficient transfer to individuals in

risky occupations. At the extreme of 100% taxation, the SDI system is clearly

is clear suboptimal as every worker will choose the occupation that makes

claiming disability insurance most likely. The following corollary shows that

there exists and optimal SDI system between zero and this extreme.
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The welfare maximizing level of social insurance does not maximize out-

put if occupation specific benefits do not exist. This is because a system

that simultaneously maximizes output and welfare requires consumption to

be perfectly smoothed across states in each occupation. In such a system

there is no longer any risk in any occupation, workers then reallocate to

equalize the marginal product across occupations, which is the efficient allo-

cation. Without occupation specific benefits, the policy maker simply does

not have sufficient policy tools to maintain indifference across occupations at

the output maximizing allocation.

Proposition 3.6 (The welfare maximizing level of social insurance with

occupation independent taxes and benefits does not maximize output.). Let

ncm(j) characterize the efficient (output maximizing) allocation. Let nrp(j), wrp(j); τ, b

be the constrained optimal planner allocation (maximizes welfare in competi-

tive equilibrium given limited policy tools). Then yrp < ycm and, in particular∫ t
j=0

nrp(j)dj <
∫ k
j=0

ncm(j) for all k ∈ [0, J ].

Proof. See Appendix B.7.

As a Corollary to Proposition 3.7, we show the first best, planner’s allo-

cation can be achieved if occupation specific benefits are available.

Corollary 3.7 (The first-best planner allocation can be achieved with a

lump-sum or proportional tax and occupation-specific benefits.). Let A∗(b̂, τ̂) =

{c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} satisfying Definition 3.1 given arbitrary

occupation-specific benefits b̂ = {bj}j funded by occupation-specific taxes τ̂ =

{τj}j. Let Acm = {ccm1 (j), ccmn (j), ccmd (j), acm(j), ncm(j), `cm(j)} define the

first-best planner’s allocation. Then, ∃b, τ such that A∗(̂b, τ̂) = Acm

Proof. See Appendix B.7

Figure 4 shows features of welfare and output gains from the occupation

independent tax and transfer social insurance system described in the propo-

sitions above. First, starting with no social insurance, the welfare and output
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gains are always positive. Second, there exists a unique output-maximizing

tax level and a unique welfare-maximizing tax level. The welfare maximizing

tax level does not coincide with the output maximizing tax level. For a range

of parametrizations (σ = 3 shown), the welfare-maximizing system puts more

labor in risky occupations than the output-maximizing (efficient) allocation.

This means that at the output-maximizing allocation, there are greater gains

from providing higher benefits for consumption smoothing than the output

loss incurred as these benefits move more workers into risky occupations than

is efficient.

[Figure 4 about here.]

In our model with homogeneous workers, SDI increases ex ante welfare

uniformly because of indifference across occupations. Ex post, we can see

more welfare changes relative to no SDI for workers in each state: disabled

and non-disabled. To understand these welfare effects, consider an old gen-

eration who entered the labor market without any SDI program and hold

fixed their asset choices. We then give them the wages, taxes, and benefits

of various sized SDI programs. The welfare gains for this experiment, across

occupations and disability outcome, are shown in Figure 5.

[Figure 5 about here.]

The first panel in Figure 5 shows that disability benefits improve the

welfare of workers that become disabled. The second panel shows workers

with low disability risk benefit even if they do not become disabled. This is

because they earn higher wages after reallocation. Similarly, workers with

high disability risk are actually worse off if they do not become disabled. This

is because SDI causes more workers to enter the high risk occupations and

lowers wages for workers in these occupations, but they gain in an ex ante

sense due to risk sharing. The final panel shows the total expected benefit

for workers in the second period of life.
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4. Robustness and Extensions

In this section we show the main results of the baseline model, that the

introduction of SDI increases welfare through each channel of risk sharing and

occupational reallocation, are robust to considerations specific to disability

risk. We consider three potential extensions: heterogeneity in patience, costly

disability, and non-verifiable disability status. Then, we show how public,

social disability insurance dominates private contracts within our framework.

4.1. Heterogeneity and Sorting

A main concern in our empirical work was to control for the sorting of

individual’s into occupations based on fixed, ex-ante heterogeneity. There, we

were concerned such a fixed trait could affect occupation choice and health.

Here we investigate within our model how such a fixed trait could affect how

individuals sort across occupations and how they value disability insurance.

For exposition purposes, we consider heterogeneity in discount factor, β and

a two-type case, βH = 1 and 0 < βL = β < 1. Our results are general to

N types and adaptable to other forms of ex ante heterogeneity. Supporting

proofs are in Appendix Section B.8.

Proposition 4.1 shows our assumptions on heterogeneity provide mono-

tone occupational sorting in the form of a cut-off rule.4 Patient, high-beta

types choose to occupy all of the less-risky occupations below an endoge-

nous threshold j̄(τ). Impatient low-beta types occupy the remaining riskier

occupations.

4Sorting is also consistent with findings in our empirical work where the IV-implied

effects were greater than OLS, which suggests sorting into high risk occupations. Our IV

focused especially on tolerance to physical demands, but our conclusions from preference

heterogeneity mostly extend to heterogeneity in health-sensitivity, though the model is

less tractable.
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Proposition 4.1 (Monotone Occupational Sorting). There exists a unique

j̄ such that any occupation with j < j̄ employs only high-beta types and any

occupation with j > j̄ employs only low-beta types.

Proof. See Appendix B.8.

Proposition 4.2 shows that the marginal introduction of SDI increases

welfare for both types through the same channels, risk sharing and occupa-

tional allocation. The first-best planner’s labor allocation is the same as

without preference heterogeneity: the allocation of workers to occupations is

chosen to achieve productive efficiency. This efficient distribution of workers

first-order stochastically dominates the distribution in the competitive alloca-

tion.A marginal introduction of SDI improves productive efficiency. It moves

the labor allocation towards more risky occupations, both within beta-types

and by moving the threshold j̄(τ) of occupations held by high-beta types

upwards.

Proposition 4.2 (Social Insurance is Welfare Improving (on the margin) for

all Beta-Types). Let EU i(τ) be the expected utility of a type βi ∈ {βh, β`}
agent from the competitive equilibrium in the case of (i) a continuum of

occupations; (ii) two types of agents with different discount factors; (ii) and

proportional social insurance (τ ≥ 0, bj = bwj, and
∑

j(2 − θj)`jτwj =∑
j θj`jbwj). Then:

EU ′i(0) > 0 ∀i ∈ {`, h}

Proof. See Appendix B.11.

While all workers’ welfare improves, an interesting result is that workers

in risky occupations can have lower welfare gains from introducing SDI than

workers in less risky occupations. As in Schulhofer-Wohl (2011), some agents

value insurance less than others. These low-beta types also gain the least

from the second channel, occupational reallocation. As the threshold j̄(τ)

increases the patient workers move into the riskier jobs previously held by
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low-beta types thus lowering their wage premium. Conversely, workers with

low disability risk value the insurance benefits of SDI more than individuals

with high risk and see an increase in their relative wage. This is a qualitative

distinction from models of SDI that treat disability risk as common across

individuals.

4.2. Costly Disability

Disability is different from other types of income risk in that the decline

in income associated with disability occurs in conjunction with an increase in

expenditure costs. These costs range from direct medical costs to increased

expenditure on goods and services that an individual can no longer produce

themselves. We introduce such costs into the model here, with technical

details in Appendix Section B.9. Let preferences over consumption in the

disabled state be represented by the utility function ud. We assume:

(i) ud(c(1+χ)) = u(c) ; (ii) u′d(c(1+χ)) ∝ u′(c) ; χ ≥ 0, ∀c > 0.

That is the cost of disability is a constant proportion of consumption (1 +χ)

required to regain the utility of the non-disabled. This is analogous to the

preferences used in Low et al. (2015). Costs of disability have constant

marginal relationships with the level of consumption and we can isolate con-

cerns with productive efficiency and risk-sharing separately.

With this modification, the social planner’s problem becomes:

max
`(j),cd(j),cn(j),c1(j)

∫
j
[u(c1(j)) + θ(j)ud(cd(j)) + (1− θ(j))u(cn(j))]`(j)dj

s.t.

∫
j
`(j)[c1(j) + θ(j)cd(j) + (1− θ(j))cn(j)]dj ≤

(∫
j
(2− θ(j))γ`(j)γdj

) 1
γ

,

∫
j
`(j)dj = 1

The solution to this problem delivers two main results. First, the allocation

of consumption equalizes marginal utilities across disabled and non-disabled
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individuals: c = c1 = cn = (1 + χ)cd. Second, the labor in occupation k

relative to occupation j at the optimal allocation of labor is:

`(k)

`(j)
=

(
(2− θ(k))

(2− θ(j)

) γ
1−γ
(

(2 + χθ(k))

(2 + χθ(j))

) 1
1−γ

With χ = 0, this is equivalent to the base case without a cost of disability.

We see the disability cost, χ > 0 reduces labor in the high-risk occupation.

The relative marginal-product is now 2−θ(j)
2+χθ(j)

/ 2−θ(k)
2+χθ(k)

: χ > 0 drives a wedge

between the relative marginal product of labor between two occupations of

different risk. Increasing this cost χ increases the difference in the marginal

product of labor between two occupations for all values of γ, even strong

complements.

In a sense, this is a second cost of disability in our model. The first cost

was the ”human capital” cost of fewer workers given by the fraction θ(j) who

cannot work in the second period. The key difference is that the impact of

the human capital cost on the planner’s allocation depends on the elasticity

of substitution across occupations. For γ > 0, the occupations are gross

complements and the planner actually puts more labor in risky occupations

relative to a safe ones. The qualitative impact of the utility costs captured

by χ does not depend on this elasticity; these costs always decrease relative

labor in risky occupations. However, the magnitude of the effect is increasing

in the substitutability of occupations.

Proposition 4.3 shows our main result holds in this environment: the in-

troduction of SDI improves welfare through both the risk sharing channel and

channel of labor reallocation that increases aggregate productivity. However,

this result does not hold for arbitrary costs χ. A sufficient restriction is that

the disability cost must not exceed the elasticity of the benefit replacement

rate b to the tax τ . Such an assumption ensures that a cost of τc in the

non-disabled state is offset by a benefit of b
1+χ

c in the disabled state.

Proposition 4.3 (Social Insurance is Welfare Improving (on the margin)).

Let EU(τ) be the expected utility of an agent from the competitive equilibrium
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in the case of (i) a continuum of occupations; (ii) costly disability; and (iii)

and proportional social insurance (τ ≥ 0, bj = bwj, and
∑

j(2 − θj)`jτwj =∑
j θj`jbwj). Then:

dEU(τ)

dτ

∥∥∥∥
τ=0

> 0

Proof. See Appendix B.15.

4.3. Non-verifiable Disability Risk and Status

Here, we consider optimal SDI when neither ex-ante disability risk nor

realized disability status is observable. In our baseline model, we have already

restricted SDI not to condition on occupation, therefore the a scheme is

robust to non-verifiable ex ante disability risk, θ(j). For the latter, truth-

telling about current disability status holds below a bound on insurance. In

other words, if the replacement rate b is less than 1− τ , given that benefits

and taxes are both proportional to wages a non-disabled agent clearly gains

from working, and therefore will not misreport her status. Proposition 4.4

makes explicit this result in our two period economy. However, it is a concern

for the quantitative economy in Section 5 when there is a large population

of young workers relative to older workers at risk of disability.

Proposition 4.4 (The Optimal SDI Policy is Robust to Non-Verifiable

Disability Status). Let {c∗1(j, τ ∗), c∗n(j, τ ∗), c∗d(j, τ
∗), a∗(j, τ ∗), w(j, τ ∗)}Jj=1 sat-

isfy the definition of a competitive equilibrium at the optimal SDI policy

(τ, b = b(τ)). Then, the expected utility of reporting disability status truth-

fully, EU(j, τ), is greater than any time-consistent deviation:

EU(j, τ) = max
a

u((1− τ)w(j, τ)− a) + θ(j)u(bw(j, τ) + a) + (1− θ(j))u((1− τ)w(j, τ) + a)

≥ max
a

u((1− τ)w(j, τ)− a) + θ(j)u(bw(j, τ) + a)

+ (1− θ(j)) max{u((1− τ)w(j, τ) + a), u(bw(j, τ) + a)}
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Proof. See Appendix B.16.

4.4. Private Contracts

In the US, private disability insurance often has relatively small payouts

and is not universally offered. Because of this, Golosov and Tsyvinski (2006)

do not consider private contracts. Here, we will show numerically how ad-

verse selection hinders private disability insurance, providing a rationale for

social insurance. Private insurance contracts induce too much demand from

workers in high-risk occupations, sullying the risk pool. Private insurance

contracts therefore earn negative profits, because at any price and benefit

that would be feasible with compulsory SDI, low-risk agents opt not to buy.

The market breaks down in a way typical of averse selection.

The crucial constraint for private insurance is that, like social insurance, it

cannot condition on the worker’s occupational risk level, θ(j).5 But, whereas

social insurance can dictate the amount of insurance any agent takes, private

insurance cannot. With social insurance, workers can only increase their ex-

posure to the insurance by increasing their exposure to disability risk, which

we showed was actually optimal to an extent (Proposition 3.5). Instead, with

private there is over-subscription into these contracts from the workers al-

ready in the risky occupations. On the other hand, if occupational risk-level

were verifiable and private insurance contracts on it, these can dominate

social insurance. We do not explore that here further because relaxing a

constraint for the private insurers makes the comparison uneven.

To illustrate how private disability insurance breaks down, we consider

our baseline economy, fixing labor at its efficient allocation and then intro-

ducing private disability contracts. Given an occupation j and insurance

5If either private or social insurance can verify disability risk level (given by occu-

pation) then they can achieve the first best allocation. This is the case with complete

markets (Section B.1, Equation B.16). For comparison’s sake, we keep the same informa-

tion restrictions on both social and private insurance.
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price p, agents solve for optimal disability insurance g:

max
g,a

u(wCM(j)−pwCM(j)g−a)+θ(j)u(bwCM(j)g+a)+(1− θ(j))u(wCM(j)+a)

Then the benefits b are set to satisfy the insurers budget constraint if they

could enforce uniform participation, the best-case scenario.∫
j

θ(j)pwCM(j)− (2− θ(j))bwCM(j)dj = 0

At any price, the private insurance contracts incur negative profits, as

shown in the left pane of Figure 6 because those in high-risk occupations

over subscribe, as shown in the right pane. The insurer could increase p or

reduce b, but both of these serve only to worsen the selection problem. Figure

6 shows how increases in p lead to increases in the average θ(j) among the

insured population and the effect is analogous if the insurer dropped b. For

private contracts with positive p and b, profits are negative. Social disability

insurance can mandate broad participation across risk levels, but private

disability insurance fails here because of averse selection: the workers who

chose to participate most are the worst risks.

[Figure 6 about here.]

5. Quantitative Evaluation

We now provide a simple quantitative model to explore the relative mag-

nitudes of reallocation and risk-sharing within the policy region of the US

and explore policy counterfactuals.

5.1. Calibration

For this exercise, we maintain the two-generation overlapping generations

structure of the theory section but modify the duration of the first period to
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30 years (ages 25-55) and the second period to 10 years (ages 55-65).6 We

consider only two occupations, guided by the natural break in occupational

risks seen in Figure 1. We target statistics we documented associated with

this break: the disability risk in the high-risk occupation is twice that of

the low-risk occupation (πh = 2π`) and 17% of the young choose the high-

risk occupation. We choose the low-risk occupation’s disability hazard to

be π` = 0.13. This provides a disability beneficiary share of the population

equal to the (demographic adjusted) average from 1985-2016: 3.9%.7

We give the social disability system a proportional tax and replacement

rate and the same tools to our constrained optimal planner. The baseline

replacement rate to 40% (see Duggan and Autor (2006)) and then solve for

the implied balanced-budget tax.

Preferences follow Low et al. (2015): u(c) = (c)1−σ−1
1−σ for the non-disabled

and ud(c) = (c∗exp(η))1−σ−1
1−σ for the disabled. We use their calibrated param-

eters: σ = 1.5 following the literature, and η = −0.448 following their esti-

mation using micro-data on consumption. The production technology uses

low-disability-risk labor n` and high-risk labor nh: Y = Q(αnγ`+(1−α)nγh)
1/γ.

We compute results for an elasticity of substitution ranging from 1
3

to 5.8 For

each γ, we recalibrate α to match 17% of workers choosing the high-risk oc-

cupation (to match the statistic we documented in the HRS data) and set Q

to normalize output to 1.

6This break is motivated by the fact that 71% of disabled beneficiaries were 55 years of

age or older in 2016 (Authors’ calculations from data released with Administration (2017).
7Authors’ calculation following Michaud and Wiczer (2017). The choice of π` = 0.13

is not far from the analogous ADL risk of 8% in the low-risk cluster of occupations.
8See Katz and Autor (1999) for a literature review on the substitutability of differen-

tiated types of labor, broadly defined. Most studies place this number between 1 and 2.

We provide results for a wider range both because the dispersion of estimates is high and

to better understand the quantitative properties of mechanism we are studying.
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5.2. Results

Using the calibrated production, preference, and occupational risk pa-

rameters, we calculate the equilibrium under two different insurance policies:

the constrained optimal equilibrium and an equilibrium with “actuarially

fair” insurance, defined by benefits that cover the expected income loss for

the average worker. Table 3 presents aggregate statistics for each of these

two counterfactual policy regimes as well as the baseline calibrated to the

US system. Relative to the actuarially fair system, the constrained optimal

SDI system is a substantial improvement in welfare, 2.3% in consumption

equivalent terms. Further, the constrained optimal policy increases welfare

over the baseline by 1.5%. This necessitates large changes in policy including

a three-fold increase in the replacement rate and a doubling of the tax rate.

This expanse is driven by the Low et al. (2015) calibration of the increased

marginal utility of consumption for the disabled.

[Table 3 about here.]

To help evaluate the channel of productive efficiency, Figure 7 shows the

labor allocation under each policy while changing the elasticity of substitu-

tion. The baseline target of 17% of workers in the risky occupation is fewer

than the output-maximizing allocation. The constrained optimal allocation

moves beyond productive efficiency, a general result proved in Proposition

3.6. However, there are negligible output effects when comparing the base-

line and constrained optimal allocation. This is an artifact of the calibra-

tion of the weight α in the production technology required to match 17%

of workers in the risky occupation. For very low elasticity of substitution,

the calibration implies a very low output weight on high-risk occupations

and therefore little effect, whereas for very high substitutability again out-

put effects are small because workers are essentially fungible. Thus, welfare

gains of the constrained optimal allocation compared to the baseline come

primarily from increased risk-sharing with little output losses from moving

beyond productive efficiency.
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[Figure 7 about here.]

6. Conclusion

In this paper, we have explored how occupational choice shapes disabil-

ity risk and policy. We first documented the importance of lifetime occu-

pational exposure to differences in disability risk. We then embedded this

idea—occupational choices imply different levels of disability risk—into an

equilibrium model with incomplete asset markets and imperfectly substi-

tutable occupations. Here, incomplete markets for disability risk lead to

both imperfect risk-sharing and an inefficient allocation of labor across oc-

cupations. This leaves room at the margin for a welfare-improving disability

insurance, which improves consumption smoothing and reallocates workers

to increase output. This latter point resembles moral hazard: insuring risky

occupations encourages more risk-taking, but at the margin this is efficient.

We provided quantitative insights from a two-occupation model calibrated

to resemble the United States. We found that the welfare-maximizing SDI

provides welfare gains that are equal to a 2.3% increase in consumption in

a world with actuarially fair insurance alone and 1.5% when compared to

the current policy regime. However, these gains come primarily through

additional risk sharing, not productive efficiency.

For future research, our results on private insurance indicated potentially

new avenues. Data on private disability insurance is not inconsistent, but is

more complicated than our model admits: Private disability insurance is very

rarely sold directly to individuals, in 2015 there were about a half-million in

the US (Isenberg (2016)). Employer-provided disability insurance is instead

much more common, covering about 1
3

of the workforce. This coverage, how-

ever, is essentially rationed and occupation is a good indicator of access. 98%

of workers enroll if DI is offered by their employers, but offers are very hetero-
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geneous across occupations (Groshen and Perez (2015)). 9 Management and

professional occupations, relatively low risk, are offered long-term disability

insurance 50% of the time, while high risk work, production occupations and

construction or extraction occupations are only offered it 28% and 20% of

the time, respectively. Employer provision of disability insurance seems to

be one way private insurance can condition on θ(j), by utilizing employers’

additional information and then rationing insurance.

9This large heterogeneity across occupations in access to disability insurance is, a useful

validation of our empirical work, showing evidence that private markets treat occupations

differently in what private disability insurance exists.
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appendix

A. Empirical appendix

In this Appendix, we include details about our instrumental variables ap-

proach using O*NET measures and robustness using an alternative disability

definition.

A.1. Data construction

Health and Retirement Study sample. The HRS surveys households whose

head is older than 50 years of age and also includes data on their “spouses,”

potentially an unmarried cohabitant. The panel is collected biannually from

1992 to 2010. The individual listed as a spouse may change through the

survey waves and we drop these observations. After excluding observations

for non-responses, we have between 16,128 and 21,623 observations per wave

with a total of 184,541.

In each wave, individuals report difficulties they have across many ADLs.

These include walking across a room, getting dressed, bathing, and getting in

and out of bed. We record an indicator once a worker begins to continuously

report a difficulty with any ADL.10

We associate individuals with their longest-held occupation. This is a

retrospective question in each wave. Because “longest-held” is repeatedly

10We also experimented with a metric over the number and severity of the difficulties,

a kind of frailty index. Results are all robust to this definition and are available upon

request.
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asked each wave, we take the occupation with the longest tenure.11 The

longest-held occupation has a median tenure of 19 years and the bottom

quartile is 11 years.

A.2. Instrumental Variables Stage One

Table 4 presents the first stage regression results for the endogenous vari-

able Hj, health requirements in occupation j. Each non-physical requirement

is standardized to have a mean 0 and standard deviation of 1. The require-

ments are defined by the first 3 orthogonal principal components of O*NET

descriptors excluding physical requirements.

[Table 4 about here.]

[Table 5 about here.]

A.3. Robustness: Linear Probability Model

In this section we replicate Table 2 but with a linear probability model

(LPM) rather than Probit. While the OLS estimator in an LPM has obvious

drawbacks, i.e. predicted probabilities may go outside of (0, 1), it is somewhat

less reliant on distributional assumptions than probit. The coefficients in the

LPM and IV-LPM are quantitatively quite close to those in the Probit model,

as we show in Table A.3

[Table 6 about here.]

11The longest-held occupation may change from wave to wave because the individual’s

tenure in the current occupation overtakes the prior longest-held occupation or because of

coding error. The latter occurs 4% of the time in the first wave, but then less than 1% of

the time. We overwrite these coding errors.
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B. Theoretical Results and Proofs

B.1. Setting up the tax-free economy

We first define the complete and incomplete markets versions of our tax-

free economy (τ = b = 0). In both cases, firms operate in spot markets (no

long-term contracting). The representative firm solves

max
{n(j)}

(∫ J

j=0

n(j)γ
)1/γ

dj −
∫ J

j=0

w(j)n(j)dj

In equilibrium all non-disabled workers are hired: n(j) = (2−θ(j))`(j). From

this problem, the first-order condition (FOC) is

w(j) =

(
y

n(j)

)1−γ

(B.1)

And for any occupations j, k

w(j)

w(k)
=

(
n(j)

n(k)

)γ−1

(B.2)

Complete Markets. In this section, we identify the endogenous variables of

the competitive equilibrium with the superscript cm. We begin by setting

up the households’ problem with the complete set of Arrow securities along

with a backyard storage technology earning return R0. It is trivial to show di-

rectly that these allocations correspond to those in the social planner’s prob-

lem because the absence of discounting combined with a backyard storage

technology solves typical incomplete markets inefficiencies associated with

OLG economies. With the full set of assets, both welfare theorems hold and

the efficient allocation, {ccm1 (j), ccmd (j), ccmn (j), `cm(j)}, is also unique.Their

possible states are s = {1, d, n} for period 1, 2 as disabled, and 2 as non-

disabled; and j for the occupation they choose. The full set of Arrow secu-

rities, {ad(j), an(j)} spans states j, s:
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max
{cs(j),`(j),an(j),ad(j)}

∫ J

j=0

{u (c1(j)) + θ(j)u (cd(j)) + (1− θ(j))u (cn(j))} `(j)dj

(B.3)

c1(j) ≤ w(j)− a(j)−
(∫ J

k=0

an(k) + ad(k)

)
dk (B.4)

cn(j) ≤ w(j) +R0a(j) +

∫
k

Rn(k)an(k)dk (B.5)

cd(j) ≤ R0a(j)

∫
k

Rd(k)ad(k)dk (B.6)

1 ≥
∫
j

`(j)dj (B.7)

The solution to this problem sets each interest rate Rn(j) = 1
1−θ(j) ,

Rd(j) = 1
θ(j)

and the saving policies are acmn (j) = −θ(j)
2

(1− θ(j))wcm(j); and

acmd (j) = 2−θ(j)
2

θ(j)wcm(j) for j such that `(j) = 1 and acms (k) = 0 ∀k 6= j.

This implies consumption is smoothed across time and states

ccm1 (j) = ccmn (j) = ccmd (j) =
2− θ(j)

2
wcm(j)

The occupation choice `(j) requires expected earnings to be equalized across

occupations j, k:

wcm(j)(2− θ(j)) = wcm(k)(2− θ(k)) (B.8)

Combining the wage condition with consumption gives

wcm(j) =
2c

2− θ(j)
(B.9)

where c is the consumption level of every individual. From the firms’ side,

Equation B.1, and substituting market clearing that y = 2c, and `cm(j)(2−
θ(j)) = n(j), we also have

wcm(j) =

(
2c

(2− θ(j))`cm(j)

)1−γ

=
2c

2− θ(j)
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Solving for `cm(j) gives

`cm(j) =

(
2c

2− θ(j)

) γ
γ−1

(B.10)

Now, we can use the market clearing condition that
∫
j
`cm(j)dj = 1 to solve

for c, and hence `cm(j). That is, 1 =
(∫

j
2c

2−θ(j)dj
) γ
γ−1

, which, solving for c,

implies that

c =
1

2

(∫ J

j=0

(2− θ(j))
γ

1−γ dj

) 1−γ
γ

and then plugging that in:

`(j) = (2− θ(j))
γ

1−γ

[∫ J

k=0

(2− θ(k))
γ

1−γ dk

]−1

(B.11)

Social Planner. Notice that the complete markets allocation will yield the

same labor allocation as the social planner and hence the same output. Be-

cause consumption is also equal across all states and generations, the social

planner and complete markets allocations are the same and the complete

markets allocation is efficient.

The social planner solves

max
`(j),c(j)

∫
j

λ(j)2u(c(j))`(j) s.t. (B.12)(∫
j

((2− θ(j))`(j))γ dj
)1/γ

≥
∫
j

l(j)2c(j)dj (B.13)∫
j

`(j)dj ≤ 1 (B.14)

where we have already plugged in the obvious result that the social planner

provides households with perfectly smooth consumption, setting it to be

equal in both periods and all states. λ(j) defines arbitrary Pareto weights.

The FOC on labor implies that(
ycm

`cm(j)(2− θ(j))

)1−γ

(2− θ(j)) =

(
ycm

`cm(k)(2− θ(k))

)1−γ

(2− θ(k))

(B.15)
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for any j, k where ycm =
(∫

j
((2− θ(j))`cm(j))γ

)1/γ

. Then, express all `cm(k)

in terms of `cm(j) and we can use the condition on labor, Equation B.14 to

sum up:

1 =

∫
k

(
`(j)cm γ−1(2− θ(j))γ

(2− θ(k))γ
dk

) 1
γ−1

Solving gives

`cm(j) = (2− θ(j))
γ

1−γ

[∫
k

(2− θ(k))
γ

1−γ dk

]−1

(B.16)

Note that this is the same outcome as our complete markets setup and hence

output is the same in both worlds. Because consumption is equal for all

people in all states in both frameworks, we have shown that the allocations

are equivalent.

Incomplete Markets. With only one asset, households solve

max
j,a

u(w(j)− a) + θu(a) + (1− θ(j))u(w(j) + a) (B.17)

{a} :u′(w∗(j)− a∗(j)) = θu′(a∗(j)) + (1− θ(j))u′(w∗(j) + a∗(j)) (B.18)

{j} :u(w∗(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j))

= u(w∗(k)− a∗(k)) + θ(k)u(a∗(k)) + (1− θ(k))u(w∗(k) + a∗(k))

(B.19)

The FOC on occupation choice that households are indifferent between choos-

ing any risk level θ(j), θ(k). We have denoted the optimal savings policy of

an agent choosing j as a∗(j), which is distinct from the complete markets

case where we indexed potential as(k) by the level of risk assumed and the

occupation that would buy them.

Consider the case θ(k) = 0, then the two first-order-conditions imply

u(w∗(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j)) = 2u(w∗(k))

(B.20)
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Note also that the Inada condition on utility guarantees that for j > 0,

θ(j) > 0 implies a∗(j) > 0 otherwise in the disabled state marginal utility is

not finite.

B.2. Inefficiency of the incomplete markets equilibrium

Proof of 3.3 . (reprinted here): Let {c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} sat-

isfy Definition 3.1 for the case b = τ = 0. There exists an alternative feasible

allocation {ĉ1(j), ĉd(j), ĉn(j), ˆ̀(j)} such that

Ej[U(ĉ1(j), ĉn(j), ĉd(j))] ≥ Ej[U(c∗1(j), c∗n(j), c∗d(j))] ∀j ∈ [0, J ]

∃k s.t. Ek[U(ĉ1(k), ĉn(k), ĉd(k))] > Ek[U(c∗1(k), c∗n(k), c∗d(k))]

where Es conditions on disability probability θs; and∫
j

ˆ̀(j) (ĉ1(j) + θ(j)ĉd(j) + (1− θ(j))ĉn(j)) dj ≤
(∫

j

(ˆ̀(j)(2− θ(j)))γ
) 1

γ

Proof. It is easy to construct one such, Pareto dominating allocation to the

incomplete markets competitive allocation. Define ˆ̀(j) = `∗(j) and ŵ(j) =

w∗(j) for all j, the same values as the competitive equilibrium. Next set

Rd(j) = 1
θ(j)

, R̂n(j) = 1
1−θ(j) ∀j. Define the remaining allocations as the

solution to agents’ problem taking prices {ŵ(j)} and {R̂n(j), R̂d(j)} as given:

max
c1(j),cn(j),cd(j),ad(j),an(j)

u(ŵ(j)−ad(j)−an(j))+θ(j)u(ad(j)R̂d(j))+(1−θ(j))u(ŵ(j)+an(j)R̂n(j))

We get fully smooth consumption consumption, ĉ1(j) = ĉn(j) = ĉd(j) =
2−θ(j)

2
ŵ(j). This is clearly feasible, as we have only redistributed the same

output among workers who choose occupation j. This is strictly preferred

for each j ∈ (0, J ] because of strict concavity and for j = 0, the workers in

the risk-free occupation are indifferent.
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B.3. Comparing the complete and incomplete markets allocations

Lemma B.1. Compared to the incomplete markets allocation, the complete

markets allocation has more mass in every risky occupation relative to the

zero-risk occupation: ∀j ∈ (0, J ], `(j)
`(0)

< `cm(j)
`cm(0)

.

Proof. To prove this, we use contradiction. Hence, we begin with the counter

factual,12

∃ j s.t.
`(j)

`(0)
≥ `cm(j)

`cm(0)
(B.21)

We can then take this to the wage space using Equation B.2. First multiply

both sides, (2−θ(j))`(j)
2`(0)

≥ (2−θ(j))`cm(j)
2`cm(0)

. Raising both the power γ − 1 we get,

subject to a parameter restriction that γ < 1(
(2− θ(j))`(j)

2`(0)

)γ−1

≤
(

(2− θ(j))`cm(j)

2`cm(0)

)γ−1

This implies, by Equation B.2

w(j)

w(0)
≤ wcm(j)

wcm(0)
(B.22)

Next, from the occupation choice indifference condition, workers must be

indifferent between either occupation

u(w(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))(w(j) + a∗(j)) = 2u(w(0))

And, by Equation B.22 and monotonicity

2u (w(0)) ≥ 2u

(
wcm(0)

wcm(j)
w(j)

)
Then, because wcm(0)

wcm(j)
= 2−θ(j)

2
as shown in Equation B.8, we get that

2u

(
wcm(0)

wcm(j)
w(j)

)
= 2u

(
w(j)

2− θ(j)
2

)

12It is trivial to show the case of θ(0) = 0 because `(0)
`(0) = 1 = 1 = `cm(0)

`cm(0) . Hence, we

prove for cases in which θ(j) ∈ (0, J ]
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where the right-hand side is the expected earnings from occupation θ. Com-

bining these,

u(w(j)−a∗(j))+θ(j)u(a∗(j))+(1−θ(j))(w(j)+a∗(j)) = 2u(w(0)) ≥ 2u

(
w(j)

2− θ(j)
2

)
But this means that the incomplete markets, risky allocation is weakly pre-

ferred to the expected earnings, which violates Jensen’s inequality with strictly

concave preferences. Hence, our assumption in Equation B.21 could not be

and we have established our Lemma B.1.

Corollary B.2. There is more mass at the risk-free occupation, where θ(0) =

0, in the incomplete markets allocation with τ = 0 than the efficient alloca-

tion: `∗(0) > `cm(0)

Proof. This is easy to see, using the fact that both `∗, `cm are densities and

hence
∫
j
`∗(j) =

∫
j
`cm(j) = 1.

Taking inequality `∗(j)
`∗(0)

< `cm(j)
`cm(0)

∀j > 0 and integrating over j we have∫
j

`∗(j)

`∗(0)
dj <

∫
j

`cm(j)

`cm(0)
dj ⇔

∫
`∗(j)dj∫
`cm(j)dj

<
`∗(0)

`cm(0)

Then because
∫
j
`∗(j)dj =

∫
j
`cm(j) = 1 by definition, this gives us 1 < `∗(0)

`cm(0)

B.4. Inefficiency of competitive incomplete markets allocation

Proof of 3.3. (reprinted here): Let {ccm1 (j), ccmd (j), ccmn (j), `cm(j)} be the effi-

cient, planner’s allocation solving

max
{c1(j),cd(j),cn(j),`(j)}

∫
j

`(j) (u(c1(j)) + θ(j)u(cd(j)) + (1− θ(j))u(cn(j))) dj s.t.

(B.23)(∫
j

((2− θ(j))`(j))γdj
) 1

γ

≥
∫
j

`(j) (c1(j) + θ(j)cd(j) + (1− θ(j))cn(j)) dj

(B.24)

1 ≥
∫
j

`(j)dj (B.25)
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Then {ccm1 (j), ccmd (j), ccmn (j), `cm(j)} strictly Pareto dominates the competi-

tive equilibrium with zero taxes {c∗1(j), c∗d(j), c
∗
n(j), `∗(j)}

Proof. First, note that both allocations satisfy feasibility because of the prob-

lems from which they are defined. That is∫
j

`(j) (c1(j) + θ(j)cd(j) + (1− θ(j))cn(j)) dj ≤
(∫

j

(`(j)(2− θ(j)))γdj
) 1

γ

for both {ccm1 (j), ccmd (j), ccmn (j), `cm(j)}, {c∗1(j), c∗d(j), c
∗
n(j), `∗(j)}

Then, from Corollary B.2 `∗(0) > `cm(0)⇔ w∗(0) < wcm(0) and because

the utility function is strictly increasing 2u(w∗(0)) < 2u(wcm(0)). Adding in

the occupational choice indifference conditions gives, for arbitrary j:

u(w∗(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j)) = 2u(w∗(0))

< 2u(wcm(0))

= 2u(wcm(j)
2− θ(j)

2
)

or equivalently, using the indifference conditions:

Ej[U(c∗1(j), c∗d(j), c
∗
n(j))] = E0[U(c∗1(0), c∗d(0), c∗n(0))]

< Ej[U(ccm1 (j), ccmd (j), ccmn (j))]

= E0[U(ccm1 (0), ccmd (0), ccmn (0))]

This means that ∀j, Ej[U(ccm1 (j), ccmd (j), ccmn (j))] > Ej[U(c∗1(j), c∗d(j), c
∗
n(j))]

just as we required.

Lemma B.3. The ratio of labor in any two occupations, one riskier than

the other, is greater in the complete markets allocation than the equilibrium

allocation with incomplete markets in which b = τ = 0:

∀j, k such that θ(j) < θ(k), `cm(k)
`cm(j)

> `∗(k)
`∗(j)

; these distributions satisfy the

monotone likelihood ratio property.
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Proof. First, suppose this is not the case, then we assume

`cm(k)

`cm(j)
≤ `∗(k)

`∗(j)
(B.26)

Which is equivalent to

`cm(k)

`∗(k)
≤ `cm(j)

`∗(j)

and by the same reasoning as in Lemma B.1 (along with parameter restriction

γ < 1)
w∗(k)

wcm(k)
≤ w∗(j)

wcm(j)

And because we have established that wcm(k)
wcm(j)

= 2−θ(j)
2−θ(k)

that gives us that

that

w∗(k)(2− θ(k)) < w∗(j)(2− θ(j)) (B.27)

This is to say, the expected income in occupation j is higher than that in k

and θ(k) also has more risk. The lottery associated with θ(j), w(j) dominates

that of lottery θ(k), w(k). Clearly, this cannot be consistent with household’s

indifference.

To put this more formally, consider the sequence of inequalities:

u(w∗(j)− a∗(j))+θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j)) (B.28)

>u(w∗(j)− a∗(k)) + θ(j)u(a∗(k)) + (1− θ(j))u(w∗(j) + a∗(k))

(B.29)

≥u(w∗(k)− a∗(k)) + θ(k)u(a∗(k)) + (1− θ(k))u(w∗(k) + a∗(k))

(B.30)

This is a contradiction of the household-indifference condition across occupa-

tions. The first holds by definition of a∗(j), a∗(k) via the Maximum Theorem

and the second holds because of our contradictory assumption. However, by

our occupational-choice indifference condition, B.20,

u(w∗(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j))

= u(w∗(k)− a∗(k)) + θ(k)u(a∗(k)) + (1− θ(k))u(w∗(k) + a∗(k))

11



Therefore, `∗ and `cm have the monotone likelihood ratio property, with

`cm dominating `∗

3.4 ]Proof of 3.4 . (reprinted here): Let `∗(j) satisfy Definition 3.1 for

the case b = τ = 0. Let `cm(j) be the feasible, output-maximizing allocation.

Then, ∫ t

j=0

`∗(j)dj ≤
∫ t

j=0

`cm(j)dj ∀t ∈ (0, J ]

The efficient distribution of labor across occupations first-order stochastically

dominates the distribution in the competitive allocation.

Proof. This is an application of the monotone likelihood ratio property shown

in Lemma B.3. Given that the distributions have the monotone likelihood ra-

tio property and `∗(j) is dominated by `cm(j), this implies that
∫ t
j=0

`∗(j)dj ≤∫ t
j=0

`cm(j)dj ∀t ∈ (0, J ]

B.5. Proof of existence of a strictly positive welfare maximizing level of in-

surance that is a Pareto improvement over no insurance.

Proof. Proof of 3.5 (reprinted here): [There exists an welfare maximizing

level of insurance that is a Pareto improvement over no insurance.] Let

EU(j, τ) be the expected utility Ej[U(c∗1(j), c∗n(j), c∗d(j))](τ) from the allo-

cation in competitive equilibrium {c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} sat-

isfying Definition 3.1 for occupation-independent benefit rate b funded by

occupation-independent tax rate τ . Then, ∃τ ∗ > 0 such that

∂
∫
`(j)EU(j, τ ∗)dj

∂τ
= 0

and

Ej[U(c∗1(j), c∗n(j), c∗d(j))](τ
∗) > Ej[U(c∗1(j), c∗n(j), c∗d(j))](0) ∀j
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We will show that ∃j, δ such that ∀ε ∈ (0, δ) EU(j, ε)− EU(j, 0) > 0: It

must be the case that ∃j such that total earnings are higher than with zero

taxes. Then, if at least one agent has higher earnings, that agent is better

off and because of indifference across occupations, so too is everyone else.

We have already shown in Lemma B.7 that ∃δ such that ∀ε ∈ (0, δ),

output increases, y(ε) > y(0). For any ε within this ball, we can re-write this

in terms of income:∫ J

j=0

`∗(j, ε)w(j, ε) ((2− θ(j))(1− ε) + θ(j)b(ε)) dj >

∫ J

j=0

`∗(j, 0)w(j, 0) ((2− θ(j))) dj

This inequality might exist for one of two reasons: (1) w(j, ε) ((2− θ(j)) + θ(j)b(ε)) >

w(j, 0) ((2− θ(j))) for at least some j, or (2) `∗(j, ε) and `∗(j, 0) are different

but @j such that expected income is higher.

Suppose (2) holds, that is:

w(j, ε) ((2− θ(j))(1− ε) + θ(j)b(ε)) ≤ w(j, 0) (2− θ(j)) ∀j (B.31)

If this is the case then we can multiply both sides of this inequality by

`∗(j, ε)

`∗(j, ε)w(j, ε) ((2− θ(j))(1− ε) + θ(j)b(ε)) ≤ `∗(j, ε)w(j, 0) (2− θ(j)) = w(j, 0)n∗(j, ε)

(B.32)

Because this holds for every j, we will integrate over j and the inequality

becomes∫
`∗(j, ε)w(j, ε) ((2− θ(j))(1− ε) + θ(j)b(ε)) dj ≤ `∗(j, ε)w(j, 0) (2− θ(j)) =

∫
w(j, 0)n∗(j, ε)dj

The left-hand side is exactly output with τ = ε and we can replace w(j, 0)

with the solution to the firms’ problem w(j, 0) = y(0)1−γn∗(j, 0)γ−1.

y(ε) ≤ y(0)1−γ
∫
j

n∗(j, ε)n∗(j, 0)γ−1dj

13



We can manipulate the right-hand side:

y(ε) ≤y(0)1−γ
∫
j

n∗(j, ε)n∗(j, 0)γ−1dj

=y(0)1−γ
∫
j

n∗(j, ε)

n∗(j, 0)
n∗(j, 0)γdj

=y(0)1−γ
∫
j

n∗(j, ε)/n∗(0, 0)

n∗(j, 0)/n∗(0, 0)
n∗(j, 0)γdj

≤y(0)1−γ
∫
j

n∗(j, ε)/n∗(j, 0)

n∗(j, 0)/n∗(0, 0)
n∗(j, 0)γdj

≤y(0)1−γ
∫
j

n∗(j, 0)γdj

=y(0)1−γy(0)γ = y(0)

Where the second and third to last come from n∗(j,ε)/n∗(0,0)
n∗(j,0)/n∗(0,0)

≤ n∗(j,ε)/n∗(0,ε)
n∗(j,0)/n∗(0,0)

≤
1, which we showed in Lemma B.5.

The result y(ε) ≤ y(0), contradicts Lemma B.7. Thus, it must be the

case that ∃j such that w(j, ε) ((2− θ(j)) + θ(j)b(ε)) > w(j, 0) ((2− θ(j)))
In case (1), because we have imperfect credit markets (only a storage

technology, no borrowing or private insurance), it is not immediate that

higher expected lifetime consumption makes workers better off. Consider

the problem of a worker in occupation j with some tax rate ε ∈ (0, δ) for

which w(j, ε)[(2−θ(j))(1−ε)+θ(j)b(ε)] > w(j, 0)(2−θ(j)). If j = 0 (θ0 = 0)

it is obvious that EU0(ε) > EU0(0). For all other j, we have

w(j, 1− ε) > w(j, 0)− θ(j)

2− θ(j)
b(ε)w(j, ε)

This implies for ε sufficiently small:

EUj(ε) >maxau(w(j, 0)− θ(j)

2− θ(j)
b(ε)w(j, ε)− a)

+ θ(j)u(b(ε)w(j, ε) + a) + (1− θ(j))u(w(j, 0)− θ(j)

2− θ(j)
b(ε)w(j, ε) + a)

Then, for the marginal introduction of b(τ)w(j, τ) we have can differentiate

with respect to the benefit b(ε)w(j, ε) at ε = 0

14



dEUj(0)

d(bw(j, 0))
>− θ(j)

2− θ(j)
u′(w(j, 0)− a∗(j, 0)) + θ(j)u′(a∗(j, 0))− θ(j)

2− θ(j)
(1− θ(j))u′(w(j, 0) + a∗(j, 0))

=θ(j)u′(a∗(j, 0))− θ(j)

2− θ(j)
[u′(w(j, 0)− a∗(j, 0)) + (1− θ(j))u(w(j, 0) + a∗(j, 0))]

>θ(j)[u′(a∗(j, 0))− u′(w(j, 0)− a∗(j, 0))]

>0

where a∗(j, 0) is the optimizing policy at bw(j, τ) = 0. The second in-

equality comes from u(·) being concave. The final inequality comes from

a∗(j, 0) < w(j, 0) − a∗(j, 0) since θ(j) ∈ [0, 1
2
], which implies u′(a∗(j, 0)) >

u′(w(j, 0)− a∗(j, 0)).

B.6. Supporting lemmas for τ > 0 is welfare improving

Lemma B.4. For wages w(j), benefits b(τ) and tax rate τ and some occu-

pational choices `(j) and wages w(j), the benefit is greater than the tax rate:

b(τ) > τ .

Proof. Given the tax rate τ , the government budget constraint holds that

b(τ)

∫ J

j=0

θ(j)w(j)`(j)dj = τ

∫ J

j=0

(2− θ(j))w(j)`(j)dj

Then for θ(j) < 2− θ(j), the whole valid domain of θ, b > τ

Lemma B.5. Given the competitive equilibrium allocation

{c∗1(j, τ), c∗n(j, τ), c∗d(j, τ), a∗(j, τ), n∗(j, τ), `∗(j, τ)} with tax rate τ ,

∂

∂τ

(
`∗(j, τ)

`∗(0, τ)

)∣∣∣∣
τ=0

> 0

Proof. To sign the derivative, we will show that ∃δ such that ∀ ε ∈ (0, δ),(
`∗(j,ε)
`∗(0,ε)

)
>
(
`∗(j,0)
`∗(0,0)

)
. This δ can be anything small enough such that a∗(j, δ) >

0 for every j. That is to say, the borrowing constraint does not bind and

choices are all in the interior of the budget set.
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Holding wage constant, for j > 0 the expected income at τ = 0 and ε > 0

is (2− θ(j))w(j, 0) and (2− θ(j))w(j, 0)(1− ε) + θ(j)b̂(ε|0)w(j, 0). We define

b(ε) as the level of benefits implied by τ = ε and w(j, ε).

The expected income (2−θ(j))w(j, 0) < (2−θ(j))w(j, 0)(1−ε)+θ(j)b̂(ε)w(j, 0)

because of Lemma B.4 and therefore, by the Maximum Theorem, expected

utility is higher:

max
aε

u(w(j, 0)(1− ε)− aε) + θ(j)u(w(j, 0)b(ε) + aε) + (1− θ(j))u(w(j, 0)(1− ε) + aε)

> max
a0

u(w(j, 0)− a0) + θ(j)u(a0) + (1− θ(j))u(w(j, 0) + a0)

For j = 0, however, the expected utility is lower with the ε tax rate:

2u(w(0, 0)(1− ε)) < 2u(w(0, 0))

Based on indifference under τ = 0, we have

max
aε

u(w(j, 0)(1− ε)− aε) + θ(j)u(w(j, 0)b(ε) + aε) + (1− θ(j))u(w(j, 0)(1− ε) + aε)

> 2u(w(0, 0)(1− ε)) (B.33)

But indifference with τ = ε implies that EU(j, ε) = EU(0, ε). Therefore,

w(j, ε) 6= w(j, 0) and w(j,ε)
w(0,ε)

6= w(j,0)
w(0,0)

We now suppose the contradiction to our premise, that ∃ĵ such that

`∗(ĵ, ε)

`∗(0, ε)
≤ `∗(ĵ, 0)

`∗(0, 0)
⇔ w(ĵ, ε)

w(0, ε)
≥ w(ĵ, 0)

w(0, 0)

As we have just shown in Equation B.33, it cannot be that w(ĵ,ε)
w(0,ε)

= w(ĵ,0)
w(0,0)

,

therefore
w(ĵ, ε)

w(0, ε)
>
w(ĵ, 0)

w(0, 0)

But then, ∃k such that k > j but

w(ĵ, ε)

w(0, ε)
>
w(k, ε)

w(0, ε)
>
w(ĵ, 0)

w(0, 0)
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which means that w(ĵ, ε) > w(k, ε) and therefore

(2−θ(ĵ))w(ĵ, ε)(1−ε)+θ(ĵ)b(ε)w(ĵ, ε) > (2−θ(k))w(k, ε)(1−ε)+θ(k)b(ε)w(k, ε)

But if k is a riskier occupation with lower expected income than ĵ, then

workers cannot be indifferent. For any such ĵ we could find a k and therefore

∀j:
w(j, ε)

w(0, ε)
<
w(j, 0)

w(0, 0)
⇔ `∗(j, ε)

`∗(0, ε)
<
`∗(j, 0)

`∗(0, 0)

Corollary B.6. The mass in the risk-free occupation, where θ(0) = 0, is

decreasing in τ : ∂`∗(0,τ)
∂τ

∣∣∣
τ=0

< 0

Proof. This is a direct result of Lemma B.5 and the identity
∫
j
`∗(j, τ)dj = 1.

If ∃δ : ∀ε ∈ (0, δ) `∗(j,ε)
`∗(0,ε)

> `∗(j,0)
`∗(0,0)

. Consider integrating over j, then∫
j

`∗(j, ε)

`∗(0, ε)
dj >

∫
j

`∗(j, 0)

`∗(0, 0)
dj∫

j
`∗(j, ε)dj∫

j
`∗(j, 0)dj

>
`∗(0, ε)

`∗(0, 0)

1 >
`∗(0, ε)

`∗(0, 0)

Lemma B.7. Let, y∗(τ) be the output at competitive equilibrium allocation

{c∗1(j, τ), c∗n(j, τ), c∗d(j, τ), a∗(j, τ)n∗(j, τ), `∗(j, τ)} with tax rate τ . y∗(τ) is

increasing in τ at τ = 0, ∂y
∂τ
|τ=0 > 0

Proof. Recall the tax-free competitive equilibrium has lower output than the

first best planner’s efficient output, y∗(0) ≤ ycm (as shown in 3.4) and that

this is because the distribution of labor in the first best first order stochasti-

cally dominate the distribution of labor in the tax-free competitive equilib-

rium:
∫ x
j=0

n∗(j, 0)dj ≥
∫ x
j=0

ncm(j, 0)dj for all x ∈ (0, J ]. Here, we use the
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related Lemma that helped establish monotone likelihood ratio dominance,

B.3 and the similar Lemma relating τ > 0 to τ = 0, Lemma B.5. Using

these, for any j > 0, we can find an υ(j) > 0 small enough such that:

`∗(j, 0)

`∗(0, 0)
<
`∗(j, υ(j))

`∗(0, υ(j))
<
`cm(j)

`cm(0)

Let δ = minj υ(j) so that ∀ε ∈ (0, δ) and ∀j,

`∗(j, 0)

`∗(0, 0)
<
`∗(j, ε)

`∗(0, ε)
<
`cm(j)

`cm(0)
(B.34)

We now treat cases of γ > 0 and γ < 0 separately, though the steps are

exactly the same. First, with γ > 0, we multiply Inequality B.34 by (2−θ(j))
and exponentiate to γ.(

(2− θ(j))`∗(j, 0)

`∗(0, 0)

)γ
<

(
(2− θ(j))`∗(j, ε)

`∗(0, ε)

)γ
<

(
(2− θ(j))`cm(j)

`cm(0)

)γ
Because this holds for all j, we integrate over j and then exponentiate to 1

γ(∫
j

(
(2− θ(j))`∗(j, 0)

`∗(0, 0)

)γ
dj

) 1
γ

<

(∫
j

(
(2− θ(j))`∗(j, ε)

`∗(0, ε)

)γ
dj

) 1
γ

<

(∫
j

(
(2− θ(j))`cm(j)

`cm(0)

)γ
dj

) 1
γ

y∗(0)

`∗(0, 0)
<

y∗(ε)

`∗(0, ε)
<

ycm

`cm(0)

If γ < 0 we have the same, but inequalities flip twice when we exponen-

tiate:

`∗(j, 0)

`∗(0, 0)
<
`∗(j, ε)

`∗(0, ε)
<
`cm(j)

`cm(0)(
(2− θ(j))`∗(j, 0)

`∗(0, 0)

)γ
>

(
(2− θ(j))`∗(j, ε)

`∗(0, ε)

)γ
>

(
(2− θ(j))`cm(j)

`cm(0)

)γ
(∫

j

(
(2− θ(j))`∗(j, 0)

`∗(0, 0)

)γ
dj

) 1
γ

<

(∫
j

(
(2− θ(j))`∗(j, ε)

`∗(0, ε)

)γ
dj

) 1
γ

<

(∫
j

(
(2− θ(j))`cm(j)

`cm(0)

)γ
dj

) 1
γ

y∗(0)

`∗(0, 0)
<

y∗(ε)

`∗(0, ε)
<

ycm

`cm(0)
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Now we have to use Lemma B.1 and Corollary B.6 to order `∗(0, 0), `∗(0, ε)

and `cm(0). This tells us `∗(0, 0) > `∗(0, ε) > `cm(0) and therefore

1

`∗(0, 0)
<

1

`∗(0, ε)
<

1

`cm(0)

Therefore, we can re-write y∗(0)
`∗(0,0)

< y∗(ε)
`∗(0,ε)

as `∗(0, 0)y∗(0) < y∗(ε) `
∗(0,0)
`∗(0,ε)

and because y∗(ε) `
∗(0,0)
<

1 this implies

y∗(0) < y ∗ (ε) .

B.7. Achieving the first best allocation

Proof. Proof of 3.6 (reprinted here): [The welfare maximizing level of so-

cial insurance with occupation independent tax and benefit rates does not

maximize output.] Let ncm(j) characterize the efficient (output maximizing)

allocation. Let {nrp(j), wrp(j)}; τ, b be the constrained optimal planner al-

location (maximizes welfare in competitive equilibrium given policy tools).

Then yrp < ycm.

We will show the competitive equilibrium indifference condition Ej[U(w(j))] =

E0[U(w(0))] is not satisfied at the output maximizing allocation. Recall,

wages at the output maximizing allocation satisfy:

w(j) =
2

2− θ(j)
w(0) ∀j

Therefore, we can write Ej[U(w(j))] for arbitrary j ∈ (0, J ] as:

Ej[U(w(j))] = max
a
{u((1− τ − a)

2

2− θ(j)
w0) +

+ θ(j)u((b+ a)
2

2− θ(j)
w0) + (1− θ(j))u((1− τ + a)

2

2− θ(j)
w0)
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By concavity of u(·), it must be c1 ≤ E[c2]. Some algebra delivers:

c1 ≤ E[c2] ⇒ (1− τ − a) ≤ a+ θ(j)b+ (1− θ(j))(1− τ)

⇒ a ≥ θ(j)

2
(1− τ − b)

⇒ c1 ≤ w(0)
2

2− θ(j)
(2− θ(j))(1− τ) + θ(j)b

2

⇒ c1 ≤ w(0)[(1− τ)− θj
2− θj

b]

This inequality implies first period consumption in occupation j is less

than that of the risk free occupation: c∗1(j) ≤ (1− τ)w(0); if:

[(1− τ)− θj
2− θj

b] ≤ (1− τ)

This is clearly the case since θ ∈ (0, J ] and b ≥ 0. Thus, we have shown

c1(j) < c1(0). Jensen’s inequality and the Euler, u′(c1) = E[u′(c2)] imply

that u(c1) > Ej[u(c2)] and together we have:

E0[u(w(0))] = 2u(w(0)(1− τ)) ≥ 2u(c1(j)) > Ej[u(w(j))]

This contradicts the occupation indifference condition and so productive

efficiency cannot be maintained as a competitive equilibrium when using a

proportional tax and benefit scheme with occupation independent rates.

Proof. Proof of 3.7 (reprinted here): [The first-best planner allocation can

be achieved with a lump-sum or proportional tax and occupation-specific

benefits.] Let A∗(̂b, τ̂) = {c∗1(j), c∗n(j), c∗d(j), a
∗(j), n∗(j), `∗(j)} satisfying

Definition 3.1 given arbitrary occupation-specific benefits b(j) funded by

occupation-specific taxes τ(j). LetAcm = {ccm1 (j), ccmn (j), ccmd (j), acm(j), ncm(j)`cm(j)}
define the first-best planner’s allocation. Then, ∃b(j), τ(j) such thatA∗(b((j)), τ(j)) =

Acm

To achieve the efficient allocation in the decentralized economy, w(j) =

w(j′) for all j, j′ and EUj = EUj′ . This can be achieved with occupation
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specific benefits and a non-occupation specific tax. These can be any com-

bination of lump-sum or proportional. Here consider lump-sum benefit and

proportional tax. The constrained optimal planner chooses:

b(j) = w(j)(1− τ)

τ =

∫
j
ncm(j)θ(j)b(j)dj

Y

Here, individuals in each occupation consume w(j)(1 − τ) in each period,

regardless of disability status. Then for EUj = EUj′ , it must be w(j) =

w(j′) for all j, j′ and thus the constrained optimal planner achieves welfare

maximization and output maximization simultaneously.

B.8. Extension: Heterogeneous Beta and Occupational Sorting

Here we expand the model to exhibit the kind of sorting on individual

heterogeneity which we worked to control for in the empirical section. Specif-

ically, we consider heterogeneity in the discount factor. We provide proofs

for a population with two-types: patient types with high-beta βH and im-

patient types with low-beta βL. The measure of each type is fixed in each

generation: φL ≥ 0, φH ≥ 0 such that φL + φH = 1. 13

Our goal is to show the following. First, more patient individuals sort into

higher risk occupations. Second, the main results of the paper go through:

(i) the laissez-faire allocation is inefficient; and (ii) an economy with the

marginal introduction of SDI from zero generates higher welfare for all agents

compared to an economy with no SDI. We discuss interesting implications

for unequal gains from SDI based on these results in the text.

The Social Planner’s Problem.. The allocation of labor in the social planner’s

problem is unchanged. The ratio of labor in two occupations are proportional

to their risks.

13Our results do generalize to N types.
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Step 1: Separation of low and high-beta occupations. Want to show that the

more patient high-beta types sort into the least risky occupations. To do this,

we will show that if the high-beta type is indifferent between the risk-free

occupation and any risky occupation, then the low-beta type strictly prefers

the risky occupation. Thus, the low-beta type must inhabit strictly riskier

occupations.

Proposition B.8 (Monotone Occupational Sorting). There exists a unique

j̄ such that any occupation with j < j̄ employs only high-beta types and any

occupation with j > j̄ employs only low-beta types.

Proof. Observe that for arbitrary occupations j < k that employ a high-

beta type, it must be: Ej[U
h] = Ek[U

h]; and the same condition holds for

low-beta types. Now, want to show for arbitrary occupations j < k such

that Ej[U
h] = Ek[U

h], it must be E[U `(j)] < E[U `(k)], which implies that

occupation j will not employ a low-beta type.

WLOG assume βH = 1 and denote βL as just β. Let high-types be

indifferent between occupations j < k.

u(w∗(k)− a∗H(k)) + θ(k)u(a∗H(k)) + (1− θ(k))u(w∗(k) + a∗H(k)) = u(w∗(j)− a∗H(j)) + θ(j)u(a∗H(j)) + (1− θ(j))u(w∗(j) + a∗H(j))

= 2u(w∗(0))

Want to show:

u(w∗(j)− a∗L(j)) + βθ(j)u(a∗L(j)) + β(1− θ(j))u(w∗(k) + a∗L(j)) > (1 + β)u(w∗(0))

Add (1− β)u(w∗(0)) to both sides. Suffices to verify:

u(w∗(j)− a∗L(j)) + βθ(j)u(a∗L(j)) + β(1− θ(j))u(w∗(j) + a∗L(j)) + (1− β)u(w∗(0))

> (1 + β)u(w∗(0)) + (1− β)u(w∗(0))

= u(w∗(j)− a∗H(j)) + θ(j)u(a∗H(j)) + (1− θ(j))u(w∗(j) + a∗H(j))
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By optimality of a∗L(j), we have:

u(w∗(j)− a∗L(j)) + βθ(j)u(a∗L(j)) + β(1− θ(j))u(w∗(j) + a∗L(j)) + (1− β)u(w∗(0)))

≥ u(w∗(j)− a∗H(j)) + βθ(j)u(a∗H(j)) + β(1− θ(j))u(w∗(j) + a∗H(j)) + (1− β)u(w∗(0))

It then suffices to show

u(w∗(j)− a∗H(j)) + βθ(j)u(a∗H(j)) + β(1− θ(j))u(w∗(j) + a∗L(j)) + (1− β)u(w∗(0))

> u(w∗(j)− a∗H(j)) + θ(j)u(a∗H(j)) + (1− θ(j))u(w∗(j) + a∗H(j))

Algebraically, this inequality holds if and only if u(w∗(0)) > θ(j)u(a∗H(j))+

(1− θ(j))u(w∗(j) + a∗H(j)) But, by assumption,

2u(w(0)∗) = u(w∗(j)− a∗H(j)) + θ(j)u(a∗H(j)) + (1− θ(j))u(w∗(j) + a∗H(j))

We have our result if u(w∗(j)−a∗H(j)) > θ(j)u(a∗H(j))+(1−θ(j))u(w∗(j)+

a∗H(j)). Suppose not, then by the concavity of u it must be, a∗H(j) >

w∗(j)−a∗H(j)⇒ a∗H(j) > 1
2
w∗(j). But this violates the first order condition:

u′(w∗(j)− a∗H(j)) ≥ u′(
1

2
w∗(j))

≥ θ(j)u′(
1

2
w∗(j)) + (1− θ(j))u′(3/2w∗(j))

Step 2: CM with Heterogenous Beta is Pareto Inefficient. In this section we

use the result from the previous proposition to argue that the competitive

allocation is inefficient both in terms of consumption sharing and occupa-

tional sorting. In particular, we will show it is inefficient within beta-types,

a simple extension of our proofs for the homogenous beta case.

Proposition B.9 (The Competitive Allocation with Heterogenous Beta

and without Social Insurance is Pareto Inefficient). Let {c∗1(j), c∗n(j), c∗d(j),
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a∗(j), n∗(j), `∗(j)}Jj=1 satisfy the definition of a competitive equilibrium in

the case of (i) a continuum of occupations; (ii) two types of agents with dif-

ferent discount factors; (ii) and no social insurance (b = τ = 0). There exists

an alternative feasible allocation {ĉ1(j), ĉd(j), ĉn(j), ˆ̀(j)}Jj=1 that:

(i) increases expected utility in each occupation

Ej[U
m(ĉ1(j), ĉn(j), ĉd(j))] ≥ Ej[U

m(c∗1(j), c∗n(j), c∗d(j))] ∀j ∈ {1, . . . , J}; m ∈ {L,H}

∃k s.t. Ek[U(ĉ1(k), ĉn(k), ĉd(k))] > Ek[U(c∗1(k), c∗n(k), c∗d(k))]

(ii) is feasible∫
j

ˆ̀(j) (ĉ1(j) + θ(j)ĉd(j) + (1− θ(j))ĉn(j)) dj ≤
(∫

j

(ˆ̀(j)(2− θ(j)))γdj
) 1

γ

Proof. This is an application of Proposition 3.3. Fix j̄ dictating the span of

occupations of each type in the LF economy according to the above monotone

sorting proposition. Next, open complete markets within each beta type and

allow occupation choices within j ∈ [j̄, J) for the low-beta types and j ∈ [0, j̄)

for the high-beta types. By Proposition 3.3, the allocation will be preferred

by each type and increase output.

Proposition B.10 (The Competitive Allocation with Heterogenous Beta

and without Social Insurance is Puts too Few Workers in Risky Occupations).

Let {`∗j} satisfy the definition of a competitive equilibrium in the case of (i)

a continuum of occupations; (ii) two types of agents with different discount

factors; (ii) and no social insurance (b = τ = 0). Let {`CMj } be the feasible

output maximizing allocation. Then:∫ t

j=0

`∗j ≤
∫ t

j=0

`CMj ∀t ∈ [0, J ]

ie: the efficient distribution of labor across occupations first-order stochastic

dominates the distribution in the competitive equilibrium.
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Proof. Fix j̄ dictating the span of occupations of each type in the LF economy

according to the above monotone sorting proposition. It is a simple applica-

tion of Proposition 3.4 to show first order stochastic dominance within the

occupations held by a given beta type, when normalized by the total number

of workers in occupations either greater or less than j̄.∫ t
j=0

`∗j∫ j̄
j=0

`∗j
≤
∫ t
j=0

`CMj∫ j̄
j=0

`CMj
∀t ∈ [0, j̄] (B.35)∫ s

j=j̄
`∗j∫ J

j=j̄
`∗j
≤
∫ s
j=j̄

`CMj∫ J
j=j̄

`CMj
∀s ∈ (j̄, J ] (B.36)

What remains to show is that the LF economy puts more workers in the less

risk occupations, those below j̄, than the efficient allocation:

φ∗ ≡
∫ j̄

j=0

`∗j ≥
∫ j̄

j=0

`cmj

where φ∗ equals the measure of high-beta type agents in each generation.

Given B.35, it is sufficient to show `∗(0) > `cm(0) to show B.37 holds. This

follows the same direct argument as the baseline case since, again, we are

only dealing with relative quantities within a β type.

Step 3: Welfare Gain from SDI w/ Heterogenous Beta. The prior two steps

have shown the competitive allocation of the economy with heterogenous beta

generates the same sources of inefficiency, lack of risk sharing and productive

inefficiency, as the economy with just one beta type. In this final step we

show the marginal introduction of social disability insurance (SDI) continues

to increase welfare and does so for both beta types.

Proposition B.11 (Social Insurance is Welfare Improving (on the margin)

for all Beta-Types). Let EU i(τ) be the expected utility of a type βi ∈ {βh, β`}
agent from the competitive equilibrium in the case of (i) a continuum of

occupations; (ii) two types of agents with different discount factors; (ii) and
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proportional social insurance (τ ≥ 0, bj = bwj, and
∑

j(2 − θj)`jτwj =∑
j θj`jbwj). Then:

EU ′i(0) > 0 ∀i ∈ {`, h}

Proof. Lemma 1. SDI increases output (dy
∗

dτ
|τ=0 > 0). Fix j̄ ∈ (0, J ].

Impose a modified competitive economy with the additional restriction that

high-beta types may only choose occupations j ≤ j̄ and low-beta types may

only choose occupations j > j̄. By an application of Lemma C.6, we have
dy∗

dτ
|τ=0 > 0, maintaining fixed j̄. Denote j̄(τ), as the high versus low beta

cut-off in the economy with SDI characterized by τ ∈ [0, ε] and j̄cm as the

cut-off in the first-best planner (output maximizing) economy. What remains

to be shown is that:

j̄(0) ≤ j̄(τ) ≤ j̄cm

Suppose this is not true, that at marginal occupation k such that occupa-

tion k employs high-beta types and occupation k+ ε employs low-beta types

for all ε > 0, we have: Ej[U
H(w(j, 0))] = Ek[U

H(w(k, 0))] for all j < k, but

Ej[U
H(w(j, τ))] > Ek[U

H(w(k, τ))] for some j < k.

At τ = 0, competitive wages must be monotone increasing, otherwise ex-

pected income would be higher in a less risky occupation and the occupation

indifference condition cannot be satisfied. This implies that w(k + ε, 0) >

w(k, 0). Let k − δ < j̄(τ) The assumption for contradiction that j̄(0) > j̄(τ)

combined with Lemma C.6 imply n(k − δ, τ) > n(k − δ, 0) for δ small, be-

cause the allocation under τ covers fewer occupations and puts more mass

at riskier occupations. Subsequently: w(k − δ, τ) < w(k − δ, 0). Likewise,

for occupations k, we have assumed k > j̄(τ) and by the same logic apply-

ing C.6 n(k, τ) < n(k, 0) for δ small, because the allocation under τ covers

more occupations and puts more mass at riskier occupations. Subsequently:

w(k, τ) > w(k, 0) > w(k − δ, 0) > w(k − δ, τ).

Let Ej(y(w(j), τ)) be the total expected income in occupation j under

26



SDI scheme τ . We then have:

Ek(y(w(k), τ)) = (2− θ(k))w(k, τ)(1− τ) + θ(k)w(k, τ)b(τ) >

> Ek(y(w(k), 0)) = (2− θ(k))w(k, 0) >

Ek−δ(y(w(k − δ), 0)) = (2− θ(k − δ))w(k − δ, 0)

Where the first inequality is true for τ small since b(τ) > τ at all values and

w(k, τ) > w(k, 0) > w(k − δ, 0). But, we have assumed Ek[U
H(w(k, 0))] =

Ek−δ[U
H(w(k − δ, 0))], then occupation k at tax rate τ represents a lottery

with less risk and a strictly higher risk premium relative to occupation k− δ
and it must be: Ek[U

H(w(k, τ))] > Ek−δ[U
H(w(k − δ, τ))], a contradiction.

Part 2. SDI increases welfare for both types. Given the prior

lemmas, proofs from the baseline case can be applied directly for high-beta

types. What remains is to show low-beta types also gain. The thrust is

similar to the baseline: so long as τ is sufficiently small that full insurance

is not provided (a∗(j, τ) > 0 for all j) and output increases, then we have a

welfare improvement at τ for all types.

First, we argue that the introduction of disability insurance raises ex-

pected consumption of the workers in the highest risk occupation, j = J .

Expected consumption in occupation j for an arbitrary τ is:

C(j) ≡ wj[(1− τ)(2− θj) + bθj]

= nγ−1
j y1−γ[(1− τ) +

θ

2− θ
b]

The second equality comes following some algebra after substitution of the

competitive wage: wj = ( y
nj

)−1γ. The marginal change in total consumption

at the introduction of SDI is:

dC(j)

dτ
‖τ=0 =

dnj
dτ

(1− γ)(nj)
γ−2y1−γ + (1− γ)y−γnγ−1

j

dy

dτ
+ nγ−1

j y1−γ[
θj

2− θj
db

dτ
− 1]

= γwj
dnj
dτ

+ (1− γ)y−γnγj
dy

dτ
+ njwj[

2

2− θj
db

dτ
− 1]
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Recall: b = τ y∫
j θ(j)w(j)`(j)dj

. Since θj ∈ [0, J ], the highest possible de-

pendency ratio is one to three, and so we know b ≥ 3τ . Additionally, we

have the prior results that (1) n(τ) �fsd n(0) and so dn(J)
dτ
|τ=0 > 0; and (2)

dy
dτ
|τ=0. Together, these things imply that, given our parameter restriction

γ ∈ (−∞, 1), we have dC(j)
dτ
‖τ=0 > 0.

Now we argue dEJ [C(J)]
dτ

‖τ=0 > 0 implies dEJU(w(J,τ))
dτ

|τ=0 > 0 which to-

gether with (1) the occupation indifference condition combined with (2)

the sorting of low-beta types into the highest risk occupations; will imply
dEjU(w(j,τ))

dτ
|τ=0 > 0 for all low-beta types (ie: occupations j > j̄(τ = 0)).

Let the optimal choice of assets in occupation j = J at no SDI (τ = 0)

be denoted:

a∗(J, 0) ≡ argmax
a≥0

u((1−a)w(J, 0))+βθ(J)u(aw(J, 0))+β(1−θ(J))u((1+a)w(J, 0))

The Inada condition limc→0 u
′(c) = ∞ ensures that for all β > 0, and

N ∈ N, ∃ δ > 0 such that ∀ τ ∈ (0, δ) we have a∗(J, 0) > N
β
τ . Then, for

N large, we can find a τ small such that a∗(J, τ) > 0. At such a τ , Jensen’s

inequality provides EJ [U(w(J, τ))] > EJ [U(w(J, 0))] because the former has

higher expected payoff with lower variance.

B.9. Extension: Costly Disability

Here we can further generalize the model to include a cost of becoming

disabled. We will model it as a function ud(c) with the following properties:

u′d(c) > u′(c) and ud(c) < u(c) for all ∞ > c > 0. In words, this captures

both an expenditure cost of disability through marginal utility and a utility

cost through the absolute value. To simplify the analysis we assume further:

u′d(c(1 + χ)) = u′(c) and ud(c(1 + χ)) = u(c) for all ∞ > c > 0. That

is the cost of disability is a constant proportion of consumption (1 + χ)

required to regain the utility of the non-disabled. In this way, we have a

baseline where these costs have constant marginal relationships with the level

of consumption and we can isolate factors in the planner’s problem cleanly.
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Step 1: Characterization of the First Best Allocation. The problem of a first-

best social planner is similar to the base case except (i) relative consumption:

max
`(j),cd(j),cn(j),c1(j)

∫
j

[u(c1(j)) + θ(j)ud(cd(j)) + (1− θ(j))u(cn(j))]dj

st

∫
j

`(j)[c1(j) + θ(j)cd(j) + (1− θ(j))cn(j)]dj ≤ (

∫
j

(2− θ(j))γ`(j)γdj)1/γ∫
j

`(j)dj = 1

We see this problem is similar to the base case except: (i) relative con-

sumption in the disabled and non-disabled states must be chosen; and (ii)

the planner considers the differential marginal utility of consumption when

allocating agents.

First order conditions straight-forwardly deliver:

u′(c1) = u′(cn) = u′d(cd) ∀j

which implies: c ≡ c1 = cn < cd.

Next we consider the allocation of labor across occupations. First order

conditions imply:

wj = c+
θ(j)

2− θ(j)
cd

wj
w0

= 1 +
θ(j)

2− θ(j)
cd
c

`(j) =
2

2− θ(j)
[1 +

θ(j)

2− θ(j)
cd
c

]
1

1−γ `(0)

= y(2− θj)
γ

1−γ [(2− θj)c+ θjc
d]

1
γ−1

`(0) = [

∫
j

(
2

2− θ
)(1 +

θ(j)

2− θ(j)
cd
c

)
1

1−γ dj]

The last equation exploits the resource constraint on total labor per gen-

eration to be one.

Equivalence to the base case without a cost of disability is shown by set-

ting χ = 0. We see the disability cost drives a wedge between the relative
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marginal product of labor between two occupations of different risk. In-

creasing this cost χ increases the difference in the marginal product of labor

between two occupations. The direct implication of this is that increasing

these costs decreases relative labor in riskier occupations compared to safer

occupations.

In a sense this is a second cost of disability in our model. The first cost

was the ”human capital” cost of fewer workers given by the fraction θ(j) who

cannot work in the second period. The key difference is that the impact of

the human capital cost on the planner’s allocation depends on the elasticity

of substitution across occupations. For γ > 0, the occupations are gross

complements and the planner actually puts more labor in risky occupations

relative to a safe ones. The qualitative impact of the utility costs do not

depend on this elasticity, but the magnitude of the effect is increasing in the

substitutability of occupations.

Step 1: Competitive Equilibrium with Utility Cost of Disability is Pareto In-

efficient. In this section we use the result from the previous proposition to

argue that the competitive allocation is inefficient both in terms of consump-

tion sharing and occupational sorting.

Proposition B.12 (The Competitive Allocation with Utility Cost of Dis-

ability and without Social Insurance is Pareto Inefficient). Let {c∗j,1, c∗j,n, c∗j,d,
a∗j , n

∗
j , `
∗
j}Jj=1 satisfy the definition of a competitive equilibrium in the case

of (i) a continuum of occupations; (ii) cost of disability; (ii) and no so-

cial insurance (b = τ = 0). There exists an alternative feasible allocation

{ĉj,1, ĉj,d, ĉj,n, ˆ̀
j}Jj=1 that:

(i) increases expected utility in each occupation

E[Uj(ĉj,1, ĉj,n, ĉj,d)] ≥ E[Uj(c
∗
j,1, c

∗
j,n, c

∗
j,d)] ∀j ∈ {1, . . . , J}

∃k s.t. E[Uk(ĉk,1, ĉk,n, ĉk,d)] > E[Uk(c
∗
k,1, c

∗
k,n, c

∗
k,d)]
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(ii) is feasible

∑
j

ˆ̀
j (ĉj,1 + θj ĉj,d + (1− θj)ĉj,n) ≤

(∑
j

(ˆ̀
j(2− θj))γ

) 1
γ

Proof. This is obvious. We can construct a dominating allocation by fixing

labor choices and allowing risk sharing within occupations as shown in the

base case. Simply, for any occupation j > 0, we have a∗(j) > 0 in the

competitive equilibrium with incomplete markets. This implies

EjU(w∗(j)) = u(w∗(j)− a∗(j)) + θ(j)u(a∗(j)) + (1− θ(j))u(w∗(j) + a∗(j))

Consider instead ĉ1(j) = w∗(j)−a∗(j)+(1−θ)a∗; ĉd(j) = a∗(j); and ĉn(j) =

w∗(j). This is feasible and gives:

EjU(ĉ) = u(w∗(j)−θ(j)a∗(j))+θ(j)u(a∗(j))+(1−θ(j))u(w∗(j)) > EjU(w∗(j))

Step 2: Competitive Equilibrium with Utility Cost of Disability is Productively

Inefficient.

Proposition B.13 (The Competitive Allocation with Utility Cost of Dis-

ability and without Social Insurance Does not Attain Productive Efficiency

of the Complete Markets). Let `∗(j) satisfy the definition of a competitive

equilibrium in the case of (i) a continuum of occupations; (ii) cost of dis-

ability; (ii) and no social insurance (b = τ = 0). Let `CM(j) be the feasible

output maximizing allocation. Then:

y∗ = (

∫ J̄

j=0

(`∗(j))γdj)
1
γ < (

∫ J̄

j=0

(`CM(j)dj)γdj)
1
γ = yCM

ie: the efficient distribution of labor across occupations first-order stochastic

dominates the distribution in the competitive equilibrium.
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Proof. This proof follows closely the analogous proof for the baseline model.

Suppose, for contradiction that ∃j > 0 such that:

`(j)

`(0)
≥ `CM(j)

`CM(0)

Using the definition of competitive wages, this would imply:

w(j)

w(0)
≤ wCM(j)

wCM(0)

Since u() is monotone and increasing, this implies:

2u(w(0)) > 2u(
wCM(0)

wCM(j)
w(j)

Let cCMd = (1 + χ)cCM . Our assumptions provide χ > 0. With algebra

on the social planner’s optimality of ` (B.37), we find:

wCMj
wCMk

=
2− θk
2− θj

2 + χθj
2 + χθk

and in the case of j = 0 and k = j:

wCM0

wCMj
=

2− θj
2 + χθj

The occupational indifference condition in the competitive equilibrium

requires:

max
a≥0

u(w(j)− a) + θ(j)ud(a) + (1− θ(j))u(w(j) + a) = 2u(w(0))

Yet, we have just shown:

max
a≥0

u(w(j)− a) + θ(j)ud(a) + (1− θ(j))u(w(j) + a) = 2u(w(0))

≥ 2u(
2− θj

2 + χθj
w(j))

> 2u(
2− θj

2
w(j))
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This means the incomplete markets, risky allocation, is strictly preferred

to consuming half of expected earnings as a healthy person, in each period.

This certainly violates Jensens’ inequality and provides a contradiction.

As in the baseline model without cost of disability, we have the corollary

that `(0)
`CM (0)

> 1; the competitive allocation without insurance puts more

workers in the risk-free occupation.

Step 3: Comparing the Competitive Allocation of Labor with Utility Cost of

Disability to the Complete Markets Allocation..

Proposition B.14 (The Competitive Allocation with Utility Cost of Dis-

ability and without Social Insurance Puts too Few Workers in Risky Occu-

pations). Let `∗(j) satisfy the definition of a competitive equilibrium in the

case of (i) a continuum of occupations; (ii) cost of disability; (ii) and no

social insurance (b = τ = 0). Let `cm(j) be the feasible output maximizing

allocation. Then: ∫ t

j=0

`∗(j)dj ≤
∫ t

j=0

`cm(j)dj ∀t ∈ [0, J ]

ie: the efficient distribution of labor across occupations first-order stochastic

dominates the distribution in the competitive equilibrium.

Proof. This proof follows closely the analogous proof for the baseline model,

Proof B.4. Suppose, for contradiction that ∃j < k such that:

`∗(k)

`∗(j)
≥ `CM(k)

`CM(j)

Using the definition of competitive wages, this would imply:

w(k)

w(j)
≤ wCM(k)

wCM(j)
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and since
wCMj
wCMk

= 2−θk
2−θj

2+χθj
2+χθk

:

w∗(k)(2− θ(k))(2 + θ(j)χ) < w∗(j)(2− θ(j))(2 + θ(k)χ)

Since χ > 0 and we are given θ(j) < θ(k), the result is that the total

expected income in occupation k is less than in occupation j

w∗(k)(2− θ(k)) < w∗(j)(2− θ(j))

We have reduced the problem to the baseline case. Together we have

lower expected income and higher risk in occupation k. This arrangement

cannot satisfy indifference in expected utilities across occupations. See proof

for the baseline case for a formal exposition.

Step 4: Welfare Gain from SDI w/ Costly Disability. The prior two steps

have shown the competitive allocation of the economy with costly disability

generates the same sources of inefficiency, lack of risk sharing and productive

inefficiency, as the baseline economy. In this final step we show the marginal

introduction of social disability insurance (SDI) continues to increase welfare.

Proposition B.15 (Social Insurance is Welfare Improving (on the margin)).

Let EU(τ) be the expected utility of an agent from the competitive equilibrium

in the case of (i) a continuum of occupations; (ii) costly disability; and (iii)

and proportional social insurance (τ ≥ 0, bj = bwj, and
∑

j(2 − θj)`jτwj =∑
j θj`jbwj). Then:

dEU(τ)

dτ

∥∥∥∥
τ=0

> 0

Proof. Lemma 1. SDI increases output (dy
∗

dτ
|τ=0 > 0). First, we will

show:
d

dτ

(
`∗(j, τ)

`∗(0, τ)

)
> 0 ∀j > 0

Following the analogous proof for the baseline case, we consider δ such

that ∀ ε ∈ (0, δ), we have a∗(j, δ) > 0 for every j > 0. That is to say, the
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borrowing constraint does not bind and choices are all in the interior of the

budget set.

Hold wages constant at the no-insurance competitive level. Then for

j > 0 the expected income at τ = 0 and τ = ε > 0 are (2− θ(j))w(j, 0) and

(2− θ(j))w(j, 0)(1− ε) + θ(j)b̂(ε|0)w(j, 0), respectively. We define b(ε) as the

level of benefits implied by τ = ε and w(j, ε).

The expected income at τ = ε > 0 translates to higher expected consump-

tion under our assumption u′(c) = u′d((1 + χ)c) for all c, if b(ε)
1+χ

> ε. Since

we restrict θ(j) ≤ 1
2

we have at most 1
4

of the population in each occupation

disabled. Considering repayments only within occupation we would have a

dependency ratio of 1-to-3 implying b ≥ 3τ . Therefore, a sufficient (although

not necessary) condition for the remainder of our proofs to go through is:

(1 + χ) < 3⇒ 3τ

1 + χ
> τ → b(τ)

1 + χ
> τ

With this result, we apply the Maximum Theorem as in the baseline

model to show expected utility is higher:

max
aε

u(w(j, 0)(1− ε)− aε) + θ(j)ud(w(j, 0)b(ε) + aε) + (1− θ(j))u(w(j, 0)(1− ε) + aε)

> max
a0

u(w(j, 0)− a0) + θ(j)ud(a0) + (1− θ(j))u(w(j, 0) + a0)

For j = 0, however, the expected utility is lower with the ε tax rate:

2u(w(0, 0)(1− ε)) < 2u(w(0, 0))

Based on indifference under τ = 0, we have

max
aε

u(w(j, 0)(1− ε)− aε) + θ(j)ud(w(j, 0)b(ε) + aε) + (1− θ(j))u(w(j, 0)(1− ε) + aε)

> 2u(w(0, 0)(1− ε)) (B.37)

This violates the indifference condition of the competitive equilibrium

with τ = ε and so we must have a change in both the wage in the j = 0
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occupation and the relative wage in the j > 0 occupations: w(j, ε) 6= w(j, 0)

and w(j,ε)
w(0,ε)

6= w(j,0)
w(0,0)

The remainder of the proof showing it must be w(j, ε) < w(j, 0) and
w(j,ε)
w(0,ε)

< w(j,0)
w(0,0)

follows directly the proof for the baseline case and so is omitted.

Corollary 1. Marginal SDI decreases labor in the risk free oc-

cupation: `∗(0, ε) < `∗(0, 0) This follows a direct application of Corollary

E.6, the analogous corollary for the baseline case.

Lemma 2. Output is increasing at the marginal introduction

of SDI: dy∗(τ)
dτ
|τ=0 > 0 This follows a direct application of Lemma E.7, the

analogous lemma for the baseline case.

Part 2. SDI increases welfare: dEU(j,τ)
dτ
|τ=0 > 0 for all j

This proof again follows from the baseline case once adjusting disability ben-

efits to the non-disabled equivalent consumption: b̂(τ) = b(τ)
1+χ

and proceeding

from there.

B.10. Extension: Non-verifiable disability status

Proposition B.16 (The Optimal SDI Policy is Robust to Non-Verifiable

Disability Status). Let {c∗1(j, τ ∗), c∗n(j, τ ∗), c∗d(j, τ
∗), a∗(j, τ ∗), w(j, τ ∗)}Jj=1 sat-

isfy the definition of a competitive equilibrium at the optimal SDI policy

(τ, b = b(τ)). Then, the expected utility of reporting disability status truth-

fully, EU(j, τ), is greater than any time-consistent deviation:

EU(j, τ) = max
a
u((1− τ)w(j, τ)− a) + θ(j)u(bw(j, τ) + a) + (1− θ(j))u((1− τ)w(j, τ) + a)

≥ max
a
u((1− τ)w(j, τ)− a) + θ(j)u(bw(j, τ) + a)

+ (1− θ(j)) max{u((1− τ)w(j, τ) + a), u(bw(j, τ) + a)}

Proof. We first show that a worker in any occupation j ∈ [0, J ] who enters

the second period with an arbitrary asset a > 0 optimizes by truthfully
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revealing their disability status when healthy, ie:

u(bw(j, τ) + a) ≤ u(w(j, τ)(1− τ) + a)

where the left-hand side is the payoff if the worker claims disability and

right-hand side is the payoff from working. This holds if b ≤ 1− τ , which we

have shown in Lemma B.4 to be the case given our restriction J ≤ 1
2
. We

can quickly recap that result here: From the government budget constraint,

given a τ , b satisfies

b

∫
k

θ(k)w(k, τ)dk = τ

∫
k

(2− θ(k))w(k, τ)dk

and therefore b = τ
∫
k(2−θ(k))w(k,τ)dk∫
k θ(k)w(k,τ)dk

. θ(k) < 1 and w(k, τ) > 0 ∀k,
∫
k(2−θ(k))w(k,τ)dk∫
k θ(k)w(k,τ)dk

<

1 and thus b ≥ τ and equivalently 1− b ≤ 1− τ .

Finally, if b < 1
2

then b ≤ 1− b and 1− b ≤ 1− τ ⇒ b ≤ 1− τ .

Therefore, any time consistent plan requires truth-telling in the final pe-

riod and so the agent cannot commit to lie from period 1.

37



List of references

Acemoglu, D., Shimer, R., October 1999. Efficient unemployment insurance.

Journal of Political Economy 107 (5), 893–928.

Administration, S. S., 2017. Annual statistical report on the social security

disability insurance program, 2016. Tech. Rep. 1311826, Office of Retire-

ment and Disability Policy: Office of Research, Evaluation and Statistics.

Duggan, M., Autor, D., 2006. The growth in the social security disability

rolls: a fiscal crisis unfolding. Tech. Rep. 12436, National Bureau of Eco-

nomic Research.

Fletcher, J. M., Sindelar, J. L., Yamaguchi, S., June 2009. Cumulative effects

of job characteristics on health. Working Paper 15121, National Bureau of

Economic Research.

Golosov, M., Tsyvinski, A., 2006. Designing optimal disability insurance: A

case for asset testing. Journal of Political Economy 114 (2), 257–279.

Groshen, E. L., Perez, T. E., September 2015. National compensation survey:

Employee benefits in the united states, march 2015. Bulletin 2782, U.S.

Bureau of Labor Statistics.

Health and Retirement Study, 2013. HRS Core public use dataset. Produced

and distributed by the University of Michigan with funding from the Na-

tional Institute on Aging (grant number NIA U01AG009740). Ann Arbor,

MI.

Isenberg, K. N., 2016. U.s. individual disability income insurance 2015 annual

supplement. Tech. rep., LIMRA.

Katz, L. F., Autor, D., 1999. Changes in the wage structure and earnings

inequality. Handbook of labor economics 3, 1463–1555.

1



Low, H., Meghir, C., Pistaferri, L., 2015. Disability insurance and the dy-

namics of the incentive-insurance tradeoff. American Economic Review.

Michaud, A. M., Wiczer, D., Sep. 2017. The Disability Option: Labor Market

Dynamics with Macroeconomic and Health Risks. Tech. rep., Mimeo.

Morefield, G. B., Ribar, D. C., Ruhm, C. J., February 2011. Occupational

status and health transitions. Working Paper 16794, National Bureau of

Economic Research.

RAND HRS Data, Version P, August 2016. Produced by the RAND Center

for the Study of Aging, with funding from the National Institute on Aging

and the Social Security Administration. Santa Monica, CA.

Ravesteijn, B., van Kippersluis, H., van Doorslaer, E., Sep. 2013. The Wear

and Tear on Health: What is the Role of Occupation? MPRA Paper

50321, University Library of Munich, Germany.

Schulhofer-Wohl, S., 2011. Heterogeneity and Tests of Risk Sharing. Journal

of Political Economy 119 (5), 925 – 958.

2



List of Figures

1 The density across occupations of the incidence of difficulties
with ADLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The competitive allocation relative to the efficient, planner’s
at vaious levels of risk aversion. The labor allocation diverges
more greatly from the optimal planner’s at higher levels of risk
aversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The competitive allocations relative to the efficient at various
elasticities of substitution. Distortions away from the optimal
planner’s increase in γ to a point, then at infinity they again
converge. The optimal allocation places more in the risky
occupatiion when they are gross complements and more in
the safe when they are substitues. . . . . . . . . . . . . . . . 6

4 Output, disability, and welfare for different tax levels. The
peak output is achieved at a lower tax than the welfare maxi-
mizing tax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 The welfare effect of SDI on different groups. Among low-
risk occupations, the benefit comes from increased output and
therefore wages, which is seen in ex post gains. High-risk
occupations gain in an ex ante sense from risk sharing. . . . . 8

6 As the price of disability insurance increases, the contracts re-
main unprofitable (Left) and the risk pool deteriorates (Right).
On left, Revenue and outlays ofcontracts are normalized to
their fraction of SDI with the same price (tax). . . . . . . . . 9

7 Labor in the risky occupation is higher under the baseline and
constrained optimal SDI programs than the output maximiz-
ing allocation. It is lower with only actuarially fair DI. . . . . 10

3



0
.0

5
.1

.1
5

.2
F

ra
c
ti
o

n
 o

f 
o

c
c
u

p
a

ti
o

n
s

.05 .1 .15 .2
ADL

Density Estimate Mean

Any Difficulties in Activities of Daily Life

Figure 1: The density across occupations of the incidence of difficulties with ADLs

4



0 0.1 0.2 0.3 0.4 0.5
0.08

0.09

0.1

0.11

0.12

0.13

Distribution of Workers

Less Risk Averse (σ = 0.5)

Occupations Indexed by Disability Risk

M
e

a
s
u

re
 o

f 
W

o
rk

e
rs

 

 

0 0.1 0.2 0.3 0.4 0.5
0.06

0.08

0.1

0.12

0.14

0.16

Distribution of Workers
Log−Utility

Occupations Indexed by Disability Risk

M
e

a
s
u

re
 o

f 
W

o
rk

e
rs

 

 

0 0.1 0.2 0.3 0.4 0.5
0.06

0.08

0.1

0.12

0.14

0.16

Distribution of Workers

More Risk Averse (σ = 2)

Occupations Indexed by Disability Risk

M
e

a
s
u
re

 o
f 

W
o

rk
e

rs

 

 

0 1 2 3 4
0.985

0.99

0.995

1

1.005

Competitive Output Relative to Efficient Allocation

Risk Aversion Parameter σ

Planner

Competitive

Planner

Competitive

Planner

Competitive

Figure 2: The competitive allocation relative to the efficient, planner’s at vaious levels of
risk aversion. The labor allocation diverges more greatly from the optimal planner’s at
higher levels of risk aversion.

5



0 0.1 0.2 0.3 0.4 0.5
0.09

0.095

0.1

0.105

0.11

0.115

Distribution of Workers
Strong Complements (Elasticity of Substitution = 0.5)

Occupations Indexed by Disability Risk

M
e

a
s
u

re
 o

f 
W

o
rk

e
rs

 

 

0 0.1 0.2 0.3 0.4 0.5
0.095

0.1

0.105

0.11

0.115

0.12

Distribution of Workers
Cobb−Douglas (Elasticity of Substitution = 1)

Occupations Indexed by Disability Risk

M
e

a
s
u

re
 o

f 
W

o
rk

e
rs

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

Distribution of Workers
Substitutes (Elasticity of Substitution = 2)

Occupations Indexed by Disability Risk

M
e

a
s
u

re
 o

f 
W

o
rk

e
rs

 

 

0 5 10 15 20
0.96

0.97

0.98

0.99

1

1.01

Competitive Output Relative to Efficient Allocation

Elasticity of Subsitution between Occupations

Efficient

Competitive
Efficient

Competitive

Efficient

Competitive

Figure 3: The competitive allocations relative to the efficient at various elasticities of
substitution. Distortions away from the optimal planner’s increase in γ to a point, then at
infinity they again converge. The optimal allocation places more in the risky occupatiion
when they are gross complements and more in the safe when they are substitues.

6



Figure 4: Output, disability, and welfare for different tax levels. The peak output is
achieved at a lower tax than the welfare maximizing tax.
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Figure 5: The welfare effect of SDI on different groups. Among low-risk occupations, the
benefit comes from increased output and therefore wages, which is seen in ex post gains.
High-risk occupations gain in an ex ante sense from risk sharing.
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(1) (2)

Safe 0.189 0.106
Risky 0.264 0.157
Difference -0.076 -0.051

Observables -0.044 -0.030

% Difference 57.9 58.8

Occupation -0.031 -0.021

% Difference 42.1 41.2

N 20,328 127,298

Table 1: The decomposition of the occupation-group effect on disability. Occupations are
split between low- and high-risk and the regressors are a cubic for potential experience,
body mass index (BMI), time, dummies for education level, gender, marital status, race,
and tobacco use. Column (1) uses only one observation per individual and (2) pools all of
the data.
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(1) (2) (3) (4) (5) (6)
O*NET Phys 0.034 ∗∗ 0.035 ∗∗ 0.013 ∗∗ 0.031 ∗∗ 0.033 ∗∗ 0.012 ∗∗

(0.005) (0.010) (0.004) (0.005) (0.010) (0.004)

Experience 0.033 ∗∗ 0.033 ∗∗ 0.005 ∗∗ 0.033 ∗∗ 0.033 ∗∗ 0.005 ∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BMI 0.012 ∗∗ 0.012 ∗∗ 0.003 ∗∗ 0.012 ∗∗ 0.012 ∗∗ 0.003 ∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Woman 0.027 ∗∗ 0.032 ∗∗ -0.003 0.026 ∗∗ 0.031 ∗∗ -0.003
(0.009) (0.011) (0.007) (0.008) (0.011) (0.007)

Self-employed -0.022 ∗ -0.022 † -0.029 ∗∗ -0.022 ∗ -0.022 † -0.029 ∗∗

(0.010) (0.013) (0.008) (0.010) (0.013) (0.008)

College 0.144 ∗∗ 0.148 ∗∗ -0.033 ∗∗ 0.142 ∗∗ 0.147 ∗∗ -0.034 ∗∗

(0.010) (0.013) (0.008) (0.010) (0.013) (0.008)

No HS -0.093 ∗∗ -0.092 ∗∗ 0.045 ∗∗ -0.092 ∗∗ -0.091 ∗∗ 0.045 ∗∗

(0.011) (0.011) (0.008) (0.011) (0.011) (0.008)

Not married 0.087 ∗∗ 0.085 ∗∗ 0.015 † 0.087 ∗∗ 0.085 ∗∗ 0.016 †

(0.011) (0.009) (0.009) (0.011) (0.009) (0.009)

Not white 0.031 ∗∗ 0.033 ∗∗ -0.019 ∗ 0.031 ∗∗ 0.034 ∗∗ -0.019 ∗

(0.010) (0.012) (0.008) (0.010) (0.012) (0.008)

Smoker 0.021 ∗ 0.020 † 0.020 ∗∗ 0.021 ∗ 0.021 † 0.020 ∗∗

(0.009) (0.011) (0.007) (0.009) (0.011) (0.007)
Industry FE X X
Observations 14763 14558 14763 14763 14558 14763
Standard errors in parentheses
† p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 2: The effect of an occupation’s physical requirements on working-life disability.
Columns (1) - (3) use our instrumental variable schemes and Columns (4) - (6) treat
physical requirements as exogenous. (1) and (3) are marginal effects at the mean from
probit models. (3) and (6) use a self-reported health limitation as the dependent variable
rather than an ADL difficulty .
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Elasticity of Substitution
1
5

2 5
Young Labor in Risky Occupation

Baseline 17% 17% 17%
Constrained Optimal 17.17% 18.75% 21.59%
Actuarially Fair 16.90% 16.02% 14.63%

Welfare Gain from Constrained Optimal DI
(consumption equiv rel. to Baseline) +1.04% +1.04% +1.03%
(consumption equiv rel. to Actuarially Fair ) +6.3% +6.3% +6.2%

Constrained Optimal Output
(rel. to Baseline) +0.00% +0.00% +0.00%
(rel. to Actuarially Fair ) +0.00% +0.06% +0.12%

Aggregate Disability
(rel. to baseline) +0.14% +1.50% +3.92%
(rel. to Actuarially Fair ) +0.23% +2.34% +5.95%

Replacement rate
Baseline 40.00% 40.00% 40.00%
Constrained Optimal 121.13% 120.68% 118.95%

Tax rate
Baseline 1.59% 1.59% 1.59%
Constrained Optimal 4.80% 4.85% 4.90%

Table 3: The optimal system compared to observed US system, constrained optimal policy,
and actuarially fair in a calibrated model
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O*NET Non-phys Reqs, PC1 -0.712 ∗∗ (0.00211)

O*NET Non-phys Reqs, PC2 0.269 ∗∗ (0.00335)

O*NET Non-phys Reqs, PC3 0.302 ∗∗ (0.00261)

Constant -0.00901 ∗∗ (0.00249)
Observations 14763
R2 0.933
F 107126.6
Robust standard errors in parentheses
† p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 4: First stage estimates using non-physical descriptors to instrument physical re-
quirements.
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O*NET Non-phys Reqs, PC1 -0.711 ∗∗ (0.00212)

O*NET Non-phys Reqs, PC2 0.269 ∗∗ (0.00336)

O*NET Non-phys Reqs, PC3 0.301 ∗∗ (0.00261)

Constant -0.00922 ∗∗ (0.00251)
Observations 14558
R2 0.933
F 104812.0
Robust standard errors in parentheses
† p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 5: First stage estimates using non-physical descriptors to instrument physical re-
quirements. We include industry fixed effects and clustering standard errors on industry
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(1) (2) (3) (4) (5) (6)
O*NET Phys 0.037 ∗∗ 0.038 ∗∗ 0.013 ∗∗ 0.034 ∗∗ 0.036 ∗∗ 0.012 ∗∗

(0.005) (0.010) (0.004) (0.005) (0.011) (0.004)

Experience 0.032 ∗∗ 0.032 ∗∗ 0.005 ∗∗ 0.032 ∗∗ 0.032 ∗∗ 0.005 ∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

BMI 0.015 ∗∗ 0.015 ∗∗ 0.003 ∗∗ 0.015 ∗∗ 0.015 ∗∗ 0.003 ∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Woman 0.046 ∗∗ 0.051 ∗∗ -0.002 0.045 ∗∗ 0.050 ∗∗ -0.002
(0.008) (0.011) (0.007) (0.008) (0.012) (0.007)

Self-employed -0.014 -0.014 -0.027 ∗∗ -0.014 -0.014 -0.027 ∗∗

(0.009) (0.013) (0.007) (0.009) (0.014) (0.007)

College 0.154 ∗∗ 0.160 ∗∗ -0.027 ∗∗ 0.153 ∗∗ 0.159 ∗∗ -0.027 ∗∗

(0.010) (0.014) (0.008) (0.010) (0.014) (0.008)

No HS -0.083 ∗∗ -0.084 ∗∗ 0.059 ∗∗ -0.082 ∗∗ -0.084 ∗∗ 0.059 ∗∗

(0.011) (0.012) (0.010) (0.011) (0.012) (0.010)

Not married 0.096 ∗∗ 0.094 ∗∗ 0.016 † 0.096 ∗∗ 0.094 ∗∗ 0.016 †

(0.013) (0.011) (0.009) (0.013) (0.011) (0.009)

Not white 0.041 ∗∗ 0.044 ∗∗ -0.018 ∗ 0.042 ∗∗ 0.045 ∗ -0.018 ∗

(0.012) (0.014) (0.009) (0.012) (0.015) (0.009)

Smoker 0.025 ∗∗ 0.024 † 0.020 ∗ 0.025 ∗∗ 0.025 † 0.020 ∗

(0.009) (0.013) (0.008) (0.009) (0.013) (0.008)
Industry FE X X
Observations 14763 14558 14763 14763 14558 14763
Standard errors in parentheses
† p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 6: LPM estimate of the effect of an occupation’s physical requirements on working-
life disability. Columns (1) - (3) use our instrumental variable schemes and Columns (4) -
(6) treat physical requirements as exogenous. (1) and (3) are marginal effects at the mean
from probit models. (3) and (6) use a self-reported health limitation as the dependent
variable rather than an ADL difficulty .
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